

Experimenter TWHITV'S

Latest Directory of U.S. and Canadian AM-FM-TV STATIONS WORLD-WIDE SHORT WAVE

How to Build

Spit-Powered Oscillator

Electronic Tic-Tac-Toe

Designer's Chassis.
Decade Ω Box
P. E. Controls

Signal Tracer
Sun-Cell TRF
Experimenter's Test Bench

BUILD 16 RADIO CIRCUITS AT HOME

FREE

- SET OF TOOLS
- SOLDERING IRON
- ELECTRONIC TESTER
- PLIERS-CUTTERS
- ALIGNMENT TOOL
- tester instruction manual - HIGH FIDELITY GUIDE - QUIZ. ZES - TELEVISION BOOK - RADIO TROUBLE - SHOOTING BOOK. MEMBERSHIP IN RADIO-TV CLUB: CONSULTATION SERVICE - FCC amateur license training PRINTED CIRCUITRY

SERVICING LESSONS

irpieing in irarn roublesthooring and will practice repars on the sets that you construct rou will learm symptoms
and causes of troubles in home. porteble and car fadios. You will learn how to Wer the protessional signal Tracer, the unique sigmal injector and the dynamou are learning in this practical way, you witt be able to do many a repair job for fres. Whish will taf ExEetd the brice of
the. "Edu-kit." Our Consultation service witt melp you with any technical probteme bury. Stataitis. of 25 Poplar Pl. Water: bury, Conn.. writes for foral sets for my friends, and made money. The "Edu-kit" pald tor itelell. wus ready to spend $\$ 240$ for ${ }^{2}$ Course

TROM OUR MAIL BAE

Uen Valerio. Pit O. The Edu-kits are wonderful. Mere Ytah: :The Edu-Kits are wonderful. Were the answers for them. t have been in Qadio tor the last seven yrars. but like to work with Radio Kits, and build Radio Testing Equipment. ' enjoycd every minute wignoped with the fine. Also like to let you know that I Radio.TV club."
Robert Li. Shuff. 1534 Monroe Ave.. Muntington. W. Va, "Thought 1 wauld
drop you trw linen io say inat 1 yo. ceived my Edu-Kit. and was really amazed that such a bargain can he had at such pairing radios and phonographs. My get into thr swing of is so quickty. The the Kit is realty swrll, and linds the

UNCONDITIONAL MONEY-BACK GUARANTEE

ORDER DIRECT FROM AD

DEGEIVE FREE BONUS RESISTOR \& CONDENSER KITS wORTH \&7

```
\square Send ":Edu.Klt"" Postlinit, I enelose full mayment of $22.95
Send me FREE additjonal information deseribing "Edu.Kit.
Name
Address
```


PRINTED CIRCUITRY

At no Increase In price, the "Edu.Kit"

 now Includes Printed Circultry bulld Printed Cireult Sisnal Inlector a unlque servicing Instrument that can detect many Radlo and TV troubles. This revolutionary new technique of radio commercial padio and TV seis[^0]
RADIO-TV Experimenter

Troubleshooter's Signal Tracer. 21 92
Experimenter's Chassis25 Dry Cell Charger.
Spit-Powered Oscillator 29
Photo-Electric Controllers94
34Buying the Right Tape Recorder.
31 Single-Tube Electronic Organ. 97
Transisforized Megaphone 103
B-Battery Eliminator for Portables.
B-Battery Eliminator for Portables. 41 Versatile Oscillator 111107
Decade Resistance Box. 43 Magnetic Pendulum 114
46 Record Player Dress-up - Code-Practice Buzzer 118
49 Pocket Superhet Experimenter's Test Bench 119
58
Thread the Needle!.
58
58
Electronies "Numbers Game".
Electronies "Numbers Game".
59
59
Instant-Ready Intercom
Instant-Ready Intercom
62
62
Test Bell for the Bench.
Test Bell for the Bench.
62
62
Mystery Coil
Mystery Coil
63
63
Crystal Headseł
Crystal Headseł 64
Improved Razor-Blade Detector.65
Crystal Mierophone
68
Vibrator Repair
69
69
Pepping up Record Players 70
Battery DataTV-Set Scope Conversion.
Sun-Powered, Two-Transistor Radio. 123
Coil-Winding Machine 126
Air-Cloud Hi Fi. 134
Electronic Tic-Tac-Toe 137
Junior-Size Record Player. 140
Battery Applications 141
Dry Cell Tester. 142
True-Fidelity Amplifier 145
Portable Hi-Fi Record Player.
Making Slide Wire Resistors. 153
Super Widgef 155
Civil Air Pałrol Radio
76
Three Speeds from a Two Speed Phono Motor 80
Midget Record Player 81
Curing Radio Troubles. 83
Experimenter's Power Supply 87

Cover by Dick Locher

HOW WOULD YOU LIKE TO BREAK INTO ENGINEERING STARTING NEXT MONTH?

Your start in Engineering could mean higher pay, more interesting work, a real chance for advancement. Here's how to do it-fast!

A career in Engineering may be closer than you think, whatever your age or education or present job.

You know about the tremendous demand for engineers and technicians. But do you know how easy it is to get the training that will qualify you for this vital work, and how quickly you can advance?

First Step Wins Job Consideration

The moment you enroll for a course in Engineering you're in a position to change your job. I.C.S. Engineering Courses, for example, start you off with Basic Mathematics and Drafting. Most employers are quick to accept men who start technical training.

Your Advancement Is Rapid

Your interest, your determination, your willingness to spend free hours improving your-
self all work in your favor. But your mastery of engineering subjects is what wins you the biggest boosts.

The I. C. S. method makes it possible for you to learn while you earn, to qualify yourself for upgrading step by step-from Draftsman to Detail Designer to Engineering Technician to full-fledged Engineer. It's a plan fitted to your needs, with personalized instruction and guidance, and, if you like, regular progress reports to your employer.

Mail Coupon for Free Books

If you are seriously interested in a fresh start in an opportunity-packed field, then mark and mail the coupon today. We'll send you three free books - (1) the 36 -page career guide "How to Succeed," (2) Opportunity outlooks in your field of interest, (3) sample lesson (Math) demonstrating I. C. S. method.
I. C. S., Scranton 15, Penna. $\begin{gathered}\text { Acriestitad Member, } \\ \text { Notional Home Suily Conencil }\end{gathered}$

INTERNATIONAL GORRESPONDENCE SGHOOLS

\begin{tabular}{|c|c|c|c|c|}
\hline BOX 14248M, \& CRANTON 15, PENNA \& \multicolumn{3}{|c|}{(Partial Ilst of 257 courses)}

\hline \multicolumn{5}{|l|}{Without cost or obligation, send me "HOW to SUCCEED" and the opportunity booktel about the field BEFORE which I have marked X (plus sample lesson):}

\hline ARCHITECTURE and BUILDING CONSTRUCTION Air-Conditioning \& AVIATION
Aero-Ensineering Technology

Alrcraft a Engine Mechanic \& \multirow[t]{6}{*}{\begin{tabular}{l}
CIVIL

ENGINEEAING

Civil Enginaering

Construction EngInearing
Highway Englneering
Professional Engineer (Civil)
Reading Struc. 日luaprints
Structural Enginearing
Surveying and Mapping
\end{tabular}} \& Good Enelish

High School Mathematics

Short Story Writing \& $$
\begin{aligned}
& \text { Industrial Electronles } \\
& \text { Practical Radio-TV Eng're } \\
& \text { Practical Telephony } \\
& \text { Radio-TV Servicing }
\end{aligned}
$$

\hline Air Conditioning Architecture \& BUSINESS Accounting \& \& | LEADERSHIP |
| :--- |
| Industrial Foremanshlp | \&

\hline - Areh. Drawing and \& - Advertising \& \& \square Industrial Supervision \& \multirow[t]{4}{*}{RAILROAD
Car Inspector and Als Brake
Diesel Electrician
Diesel Engr. and Fireman
Diesel Locomotive}

\hline Building Cont \& Bus \& \& \&

\hline Byilding Estimator \& \square Cost Accounting \& \& \multirow[t]{2}{*}{MI} \&

\hline Caroantor Foreman \& Creative Salesma \& \& \&

\hline Heating \& \square Professional Sec \& - DRAFTING \& al \&

\hline Interior Decoration \& \square Public Accounting \& Architectural Dran \& -E \& W

\hline Painting Con \& \square Purchasing Ag \& \square Electrical Orafting \& adustrial Engineer \& mbustion Engineerf

\hline \& \square Sales manship \& \& \square Industrial Metallurgy \& \%er

\hline \& \& \& 0 industrial Salety \&

\hline Commer \& \square Traffic Management \& \& Machine Design \&

\hline Magazine es Book Illus. Show Card and \& CHEMICAL \& LECTAIC \& \square Mechanical Engineering \& TEXTILE

\hline Sizn Letterins \& \square Analytical Chemistry \& \& \square Protessional Ensineer (Mech) \& \square Carding and Spinning

\hline \square Sketching and Painting \& emicar Engineoring \& - Elsc. Ensf. Tochnicia \& \square Quality Control \&

\hline AUTOMOTIVE \& E \& \square Practical \& \& Loom Fixing Technician

\hline automabiles \& General Chemistry \& \square Practical Lineman \& \&

\hline Auto Body Rebuilding \& Natural Gas Prod. and \& \square Prolessional Enginear (Elec) \& \square Tool Design Tool Making \& Toxtie Finishing \& Oyoing Throwing

\hline and Refinishing Auto Engine Tuneup Auto Technician \& - Petroleum Prod, and Engr. \& | HIGH SCHOOL |
| :--- |
| \square High School Diploma | \& RADIO TELEVISION \square General Electronics Tech. \& | Throwing |
| :--- |
| Warping and Weaving Worstad Manutacturing |

\hline
\end{tabular}

(Partial Ist of 257 courses)

Name Ag Home Address.

COYNE offers

The future is YOURS in TELEVISION: A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost - you pay for training only - no costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Rodio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs -mate money eorty in course. Free Lifetime Employment Service to Graduates.

ATECHNICAL TRADE IMSTITUTE OPERATED MOT FOR PROFIT
se0 5. Paulina Street, Chleage 12, Dept. 28-H8

Coym- tha Inatitution behind this train. ion. . the hargeot, oldent, deat arw ipped
residential achool of in kied. Fow wdod f the.

Send Campon for Frree

Baak

and full details, including easy Payment Plan.
No obligation, no
solesman will call.

I COYNE Television

Home Training Division

| 500 S. Paulina St., Chicago 12, Ill.
(Dept. 28-H8
Send Free Book and details on how I can get
| Coyne Quality Television Home Training at low cost and casy terms.
Name
Address.
City

BRBEANS

 IS THE ONLY BIG TABLOID PUBLICATION in

 IS THE ONLY BIG TABLOID PUBLICATION in Existonce That Tolls You WHERE \& HOW Existonce That Tolls You WHERE \& HOW - EVERY MONTH-

 - EVERY MONTH-}

- To Buy Bankrupt, Closeout, Surplus Bargains! - To Buy Items at Wholesale! © At Below Wholesale!
- To Buy New \& Unusual Items!
- To Obtain Information on Rare Money Making Offers!
toys, books, jewelry, greeting cards, COSMETICS, HOUSEHOLD MERCHANDISE, appliances, industrial materials, MAGHINERY, TOOLS, ETC.
Often as Low as $10 \mathrm{c}-25 \mathrm{e}$ on the Retail Dollar!! ONE issue of this Sensational NEW publication can save you MORE MONEY than the cost of the entire subscription You can BUY BETTER, CHEAPER, NEWER TEINGS EVERY MONTH OF THE YEAR! Today, when your dollar buys so little, you absoJutely need every single lasue of BARGAINS in order to get the MOST FROM EVERY
PENNY YOU SPEND. Each issue carries HUNDREDS of bargain offers. many
 times SO EXTRAORDINARY that it's hard to believe that they're GENUINE Buging to 80 or more on every dollar you spend THIS MAY BE HARD TO BEHIEVE, BUT IT IS THE TRUTHI

YOU Can Make FANTASTIC Profits Buying Up Bargain Merchandise CHEAP and Selling It CHEAP SAVE MONEY ON CHRISTMAS GIFTS-TOOI

Thousands of Agents, Salesmen, Dealers are subscribers

Abstract

OON'T Take Our Word For It-Here's What Subscribers Say About "BARGAINS'"I ". . . Recelved my 1st issue and may I say IT IS A GREAT MAG. AZINE,"-M. C., Ark. ". . . I ampery pleased with BARGAINS. I have never seen anything like it." -Mrs. D. M., Maine. "...Jus t received my 1st copy of "Bargains" and believe me, cit is all that you claimed it to be." T. A.. N. Y. ". . . 1 was the reclpient of my 1st copy a few days ago. I am completely satisfled with the periodical. I also wish to express my appreciation to you for liaving made the niagazine available to me. I shall be pleased to continue niy subseription as long as the magazine is avail-able."-W. S., Wash. Every Ono OF THESE LETTERS ARE IN OUR FILES \& WERE NOT SOLICITED IN ANY WAY OR MAN. NER!

 to "BARGAINS." They went to know where to buy BEST n order to sen at ow prices lor BM Ppris. Nticles in SON why you CAN'T DO THE SAMEI Special articles in BARGAIN give you valuable tips on How to soll those bargains for BIG PROFITS. And you know. EVERYBOD is looking for bargains these days is in fact, this is mendous volume. Ask any big businessman! soid in treUnique "Subscribers Shopping Service" Enables You to Buy Big Name Merchandise at TREMENDOUS SAVINGSYou won't find this feature in ANY OTHER MAGAZINE. ONLY "BARGAINS" has it. For subscribers ONLY, each month it negotiates bargin offers in famous merchandise at LOW WHOLESALE PRICES and then offers them to subscribers AT NO PROFITI Enables you to buy in small lots-singly or in quantity at the same prices- (some. times even lower) that dealers are payingl This SINGLE FEATURE OF BARGAINS IS WORTH THE LOW SUBSCRIPTION PRICE A DOZEN TIMES OVER. Yet, it's only ONE feature among many to be found! Yes, Just onel "Bargains" Is the ONLY Publication of lis Kind In Existence!
Search your newsstand high and low. You won't find another publication like it! BARGAINS is avallable by subscriptlon ONLY. Read the glowing letters by subscribers who received their 1 st coples and WERE AMAZED by thls sensational publicationl You will be, tool

SAYE Up to $\$ 1,000$-EARN Up to $\$ 3,000$!
We honestly believe that It's possible to SAVE up to $\$ 1000$ - and EARN up to $\$ 300$, within Year by read. THIS FOR YOURSELFI
Your subscription will automatically Include the BIG 1957 CHRISTMAS SPECIAL ISSUE . . Jam full of terrifo. eye opening holiday BARGAINSI JUST $\$ 2.00-17$ por month gives you 12 great money saving issues of Bargainsl
\$2.00 Per Year-12 Big Issues (Regular price, $\$ 3.00$ per Year) to Get 10,000 New Subscribers! Your Money Back IN FULL if the First Issue Doesn't Please You! LET'S FACE IT . . . Claims, promises are easlly made on paper. You may or may not believe all wo say here. BUT can you go wrong in subscribing to "Bargains" on thls Iron-cind MONEY BACK GUARANTEE. Your money back IN FULL If the first issue that you receive doesn't please youl Can any offer be more POSITIVE, more FAIR than this POWERHUL guarantee?
Tower Press, Inc., P. O. Bex 591, Lynn 872, Mass.

Here's a FEW Samples of the Bargains Usually Found in 'BARGAINS'!

- PENCILS, 571/2s per Gross!
- 25¢ Rudolph the Ruindeer Brooches, 2\& eachl
- Plastic Toy GUNS, $2 \&$ each!
- \$1. Mufflers, Scarfs, 121/2\& eachl
- Double edg razor blades, \$1.50 par 10001
- LADIES APRONS, 61/4r eacht
- \$2.50 WALLETS, 30\& eachl
- \$1. val. BILLFOLDS, I5 eachl
- \$1. Kiddles handbags, 3\& each!
- CIGARETTE HOLDERS, l\& eacht
- BUTTONS, 144 for 25 ! !
- NEW Phono records, $78 \& 45$ r.p.m. 7s eachl
- 69\& Insect Repallent, 5 \& eachl
- Naw 20" T.Y. Pic. tubes, \$21.95 -ach!
- Famous brand $\$ 18.75$ perfume, $\$ 1$. eachl
- 49\& Xmas window decorations, 10 e per sell
- \$1. $\$ 3$ Hard cover books, 20; each!
- $\$ 200.00$ Surplus typewriters, $\$ 23.00$ -achl
- 50, Evaryday greeting cards. 7\& per boxl
- $\$ 1.95$ Men's Silk Ties, 12 $1 / 2$ achl
- \$1. val. personal clath name tapes. 40s for 721
- 39\% Under arm deodorant, 24 larl
- \$1. Automatic card shuffiers, is achl
- NEW HAIRNETS, $1 / 2$ eachl
- $\$ 15.00$ Electric Percolators. $\$ 5.00$ -achl
- $\$ 1.75$ Rudolph Raindear kiddles toilatry sets, 35 each
- $\$ 5.50$ Lucite Halrbrushes, 65 each!
- Now Sobby Pins, 70; per 700 pinsl
- \$10. Men's Tallatry Sets, 60 eachl
- Calendar Wrist Watches, \$5. eachl
- Christmas Seals. 25 per 10001
- \$2.98 Horserace game records, 30¢ achl
- PLUS HUNDREDS OF OTHER SENSATIONAL BUYS!
(Above list merely ilfustrates type of bap: gaime usually found in this paper. n hith.

LET DeVRY TEGH PREPARE YOU IN SPARE TIME AT HOME AS AN
 ELECTRONICS TECHNICIAN

$\$$

NO PREVIOUS TECHNICAL EXPERIENCE OR ADVANCED EDUCATION NEEDED!

Laborers and bookkeepers, store clerks, shop men, farmers, salesmen - men of nearly every calling - have taken the DeVry Tech program and today have good jobs or service shops of their own in Electronics. You don't have to quit your present job. If you are 17 to 55, see how you may get yourself ready for a future in the fast-growing Electronics field.

Whether you prepare at home or in our well-equipped Chicago or Toronto Laboratories, you get sound, basic training in both principles and practice. At home, you use educational movies. You build actual circuits and test equipment. You read simple directions, follow clear illustrations. When you finish, you are prepared to step into a good job in an excitingly different field. You may even start a service shop of your own. Mail coupon for free facts today.

Live-Wire Employment Service

Puts you in touch with lob opportuntities-or helps you toward a better position in the plant where you ore now employed.

Draft Age?

We have voluable information for every mon of draft age; so if you are subject to militiory service, be sure to
check the coupen.

SAMPLE BOOKLET \quad O

"Electronles and You." See for yoursalf how you growing fold.
"One of North America's Foremost Electronics Training Centers"

DeVRY TECHNICAL INSTITUTE

Chicago 41. IRINOIS

Aceradited Member of Notional Home Study Council

\qquad

HERE'S JUST WHAT YOU NEEDI

\author{

- For Home Electronics - For Home Hi-Fi Assembly - For ALL Hobbyists (Model Railroading, etc.) - For Home Workshop
}

Here is the first and only kit of its kind-a heavy duty soldering and electrical kit by Ungar-a kit of a hundred uses. It contains the famous Ungar soldering handle (used by large electronics manufacturers everywhere) with interchangeable tips for every type of soldering and plastic welding. This iron will do everything you'd expect from a bulky 100 -watt iron only better. Kit contains ten most useful items.

1. Famous Ungar Heavy Duty Handle, feather light, made to give years of servicesimply thread in choice of tips. 110-120 AC-DC. 2. Heavy Duty Screw-in Tip for all types of heavy duty soldering. Supplies a searing 825°. tip temperature in 90 seconds. 3. Precision Soldering Tip. Consists of heating element and $1 /{ }^{\prime \prime} \times 1$ " changeable tiplet for fine soldering-printed circuits, jewelry repair, plastic welding of model railroad cars, airplanes and boats. Tip temperature $600^{\circ} \mathrm{F}$ in 60 seconds. 4. Trouble Light. Supplies steady, bright light into hard-to-get-at places. 5. Circuit tester for tracing electrical troubles. Thread globe into handle and connect circuit tester to handle cord. Touch bare wires to terminals and if current is flowing the bulb lights. 6. and 7. Terminal Connectors, perfect for making permanent cord connections. Emery Paper for better soldering surfaces. 8. Rosin Core Solder specified for electronics solderingno flux required. 9. Insulating Tape. 10. Fully illustrated-easy to read 20 -page "How to Do lt" booklet.
Ungar Handle and Tips are U/L listed. Yes, all these usefulitems, beautifully packaged in this handy kit at only $\$ 4.95$. This Ungar kit \#507 is sold by electronics shops, hardware and hobby stores and Hi-Fi dealers,
UNGAR ELECTRIC TOOLS, INC. 4101 Redwood Avenue Los Angeles 66, Calif.

If your dealer is out of stock, send $\$ 4.95$ direct to the Ungar Electric Tools, Inc., 4101 Redwood Avenue, Los Angeles 66, Calif. Shipment made within ten days, prepaid. Name.

Address.
City \qquad Zone__State Postage and tax included in above price. Sorry no C.0.0.'s.

10.

RCA offers you the

 finest training
SEND FOR THIS FREE

BOOK NOW!

 a mivier of dadio coppomation of aminica Jso wist foulah start, NIW Yoik id, N. Y.
 In Conedo - ica Victor Company, Ld. 5001 Cere de Lisase Rd, Moatreal 9, Oue.

Pay-as-you-learn. You heed pay for only one study group at atime. Practical work with very first lesson. All text material and equipment is yours to keep. Courses for the beginner. and advanced student.

[^1]
Abraham Marcus, co-author of famous best-seller "Elements of Radio" makes amazing offer!

TRY MY TV and RADIO COITS F FIS REPAIR

'If you haven't earned at least $\$ 100$ in spare time during that period you pay not a cent."

Here it ls: The most amazing guarantae ever offered on any radio. TV Courte anywherel we'll send you Abraham Marcus', courst to use \$100 fixing radios and TV sets, just return the books to us and pay not a penny!
Why do we theke this sencational offer? First, because these books ari so dasy to use. They are writtem In. The same elpar, easy-to-understand copy bestalier. Second, because these hook kot rikht to the point - tell you what io do in $1 \cdot 2 \cdot 3$ Iashion. For example. once you master the arat few chaplers of the phooj you are ready for buainess of all aervice calls.
DoN'T WAlT! You risk nothing when you send the coupon below. You don't have to keen the books and pay for therm uniess you aptually to keep them, you pay on easy terms. Mall the coupon now.

MAIL THIS COUPON

Prentice-Hall, Inc., Dept. 5747-A3
Englewood Cliffs, New Jersey
Please aend me Abrsham Marcus' TV \& RADIO REPAIR COURSE
(3 volumes) for, 10 days FREE examington. Within io dey (3 volumes) for, 10 days FREP examingtion. Within 10 daya 1 of $\$ 5.60$. Then, after 1 have used the course for a FULL MONTH. paymen not katisfied I may return it and you will refund my frsi mente of or 1 will keep the course and aend you two more pay*

Name Address .

WHAT YOU GET IN THESE 3 GIANT VOLUMES

ELEMENTS OF TELEVISION SERVICING. Analyzes and illustrates more TV defects than any other book, and provides complete step-by-step procedure for correct-
ing each. You can actually SEE what to do by looking at the pletures. Reveals for the first time all detalls, theory and servicing procedures for the RCA 28-tube color television recelver, the CBS-Columbla Model 205 color set, and the Motorola 19 -inch color receiver.
RADIO PROJECTS. Build your own recelvers! Gives you 10 easy-to-follow projects, including crystal detector recelver -diode detector receiver-regenerative receiver-audio-fre. quency amplifier-tuned radio-frequency tuner-AC-DC superheterodyne recelver-etc.
RADIO SERVICING Theory and Practice. Here is everything you need to know about radio repair, repiacement, and readjustment. Easy-to-understand, step-by-step self-training handbook shows you how to locato and remedy defects quickly. Covers TRF receivers; superheterodyne receivers, short-wave, portable, automobile receivers, etc. Explains how to use testing instruments, such as meter, vacuum-tube voltmeters, tube checkers, etc., etc.

The newest hobby under the sun!

BUILD THIS SOLAR POWERED RADIO!

 and many other sun-powered electronic,alectrical and photometric devices featuring
Intermational Rectifier Corporation SUN BATERIESI
Everyone - from the beginner with a basic understanding of electrical work to the experienced professional engineer - can build this pocket-size portable radio-powered by the sun! No batteries -not even an On-Off switch. All you need is sunshine! The basis for this radio is the International 82M Sun 8attery. This unit is a scientific, accurate, precision-made photovoltalc instrument that directly converts light into electrical energy. This radio is just one of many devices you can build powered by solar energy. You bave read about this new field of science. Be among the first in this newest hodby. Put the sun to work for you!

THIS NEW BOOK TELLS YOU ALL ABOUT SUN BATTERIES - PHOTO. CELLS-AND HOW TO USE THEM. Packed with information and applications, this illustrated book shows wiring, diagrams and plans - every detall necessary to bulld many interesting devices.
THIS IS THE FAMOUS B2M SUN BATTERY YOU've READ ABOUT. Widely used in experiments, this unit in bright sunlight (10,000 ft . candles) will deliver 2 milliamperes at 250 millivolts under optimum conditions; will last indefinitely with proper care. $\$ \$ 2.50$ value for only...................... $\$ 1.50$

FREE
Complete plans for building this radio. At your elec. tronic parts distributor.

GET THE B2M SUN BATTERY AND ALL OTHER COMPONENTS REOUIRED AT LEADING ELEC. TRONIC PARTS DISTRIBUTORS EVERYWHERE. If your favorite distributor doesn't leałure the B2M Sun Battery send chech or money order to
International Rectifier Corporition
EI Sogundo. Calloorna
5285 ntyour distributar
SRECIAL OFFER, The book and the B2M Sun Battery for only 52.85 at your distributor

ASSURE YOURSELF OF FINANCIAL SECURITY-INDEPENDENCE

Imagine being able to fix anything electrical from the tiniest home electric shaver to large industrial motors! Having a Iraining that makes you command a better job with higher wages or a business of your own. You do not need previous special schooling. Just the ability to read and be mechanically inclined. We furnish you with everything! One of the kits sent to you is our famous ELECTRONIC KIT, an all-purpose trouble detector which shows you where the trouble lies. Training kits whose assembly will give you prac. tical shop training at home during your spare time! You learn practical electricity by using your hands. Best of all, these kits are yours to keep and use forever!

REPAIR ELECTRICAL EQUIPMENT!

2 EASY STEPS to SuCCESS

(1)
WE SEND YOU AN ELECTRIC KIT
(2) WE TEACH YOU ELECTRICAL AP. PLIANCE REPAIRING

WE GIVE YOU LIFETIME ADVISORY SERVICE photogrophs ond drawings and shows you what troubles to look for and then how to correct them. In addition, our course shows you how to build power tools af low cost. Also teaches you welding, nickel plating, general repairing (saw fling, bicycie and gas stove repairing, etc.). Should complicated technical problems arise or the need for a special repoir part, simply call on us. We offer YOU our free Advisory Service for LIFE! We teach you how to sollcit business get repeat orders and whot to charge. The Christy Course plus our home-shop training kits make a combination that will go o long woy taward ASSURING YOUR SUCCESS.

RUSH THIS COUPON TODAY!

The Christy maintenance and repair course is written in simple, easy-to-understand language. Eoch section is profusely illustrated by

ILLUSTRATED COURSE SHOWS EVERYTHING

CHRISTY TRADES SCHOOL, Dept. D-3114804 N. Kedzie Avo., Chicago 25, ill.Pleose send me your FREE book on Electric Equipment Selvicing and instructions forpoying loter from EARNINGS WHILE LEARNINGI
Name. .Agө................ .
Address
Cliy.. \square

Interesting, Pictorial FREE

to help you decide on your career in

ELECTRONICS
RADIO-TV COMPUTERS
Here is a graphic story about preparing for your career as an engineer or engineering technician in electronics, radio, television, computers, etc. Booklet tells about:

- Wide variety of job opportunities
- Courses offered, degrees you can earn
- Pictures of the Milwaukee School of

Engineering and its facilities

- Recreation and fraternities
- Scholarships; part-time work -plus other interesting and informative facts to help you make a sound decision on your career.

Milwaukee School of Engineering
 - dedicated to serving young men and industry

SEND COUPON TODAY:

Milwaukee School of Engineering
Depl. RTX 58, 1025 N. Mllwaukee S1., Milwaukee, Wis. Please send me free new booklet
"Prepare for Your Career in Engineering"
I'm interested in \qquad I (aame of course)
Name.
Age
Address.
City \qquad Zone State \qquad
" I am I am not eligible for veterans educational benefits. (discharge date)

CRYSTAL MICROPHONE

Built-In Volume Control For p.a. systems, radio amateurs, recording enthusiasts. Exceptional frequency charactetistics. Response: 50 cps to 10 kc. Output level: -62 db . Case finished in black and satio chrome.
Regular $\$ 18.00$ Value
ONLY

EACH

POCKET CIRCUIT TESTER

Volts - Ohms - Mills
Big 3-ia. meter. Ranges: $A C$ and DC volts: $0-10-50-250-500-2500$; DC ma: 0-5-50-500; ohms: 0-10.000-1 meg. Two rances for db. Size: $4 \% / 4^{\prime \prime}$ $31 / 4$ " $\times 11 / 2^{\prime \prime}$. Grey Anish. Complete with test lead.

Regular Price: $\$ 14.90$
ONIY $\$ \95 IACH

Send check or M.O. for payment in full. Meney-back guarantee. Merchandise shipped postpaid. Callf. cumtomers add 4% seles tax.
Electronio Equipment Distributors, Ino. 3686 El Cajon Blvd. - San Diego 4, Calif.

ETCHES AND SOLDERS-101 USES

ACTOGRAPH UNIT

sefe as a pencti, easy to use. This new home model is patterned from our Industrial Unit. etches any metal; iren, steel, brass, aluminum, gold, te. Engrave Inithals, names. part number on toole. jewolry. chasais, toys.

solder the m
concentrated hoatern way with carbon lectrodes, Inetent intense concentrated heat soon as tool touches work. No more cald joints. Thic Actograph unit as almust foor may be operated directiy from car battery. Money back guarantee. order C.O.D. $\$ 19,9 s$. For further information. NEWAGE INDUSTRIES, 222 York Road, Jenkintown, Pa.

EnJoy Thrilling High-Fidolity Super HI-FI FM Record Player

 step-by-atep assembiing instructions. Order Craft Print No. 264 now. prico $\$ 1.00$

SCIENCE AND MECHANICS

480 Eaet onie E.

NEW!
So simple.... it's like magie! LAYER-BUILT - COLOR-GUIDE
Each Kir complete with all parts and instructions

U.6K 10 Watt Amplifier (Little Jewel). Highest value in the low priced field, with built-In preamplifief and record compensator on phono channel.
Freq. Response: $\pm 10 \mathrm{DB} 20$ to 20,000 CPS af 1 watt. Distortion: 2% harmonic or less at 10 watts. In Charcoal and Brass. Shpg. Wt. 10 lbs. Complete Kit and instructions............Net 24.95

207A-K MI-Fi Preamplifier. The ideal control unit with self-power feature for use with any basic amplifier. True flexibility with 10 separate controls. Feedback throughout for low distortion and wide frequency response. In charcoal gray and brass. Shpg. Wt. 10 lbs. Complete KIt and instructions.

Net 44.50 60 Watt Basic Hi-Fi Amplifief. For
use with a preamplifier (such as
NEW
250A-K 207A-K). New advanced circuitry for true high fidelity with exceptional reserve power. Shpg. Wt. 40 lbs. Complete Kit and instructions

Net 79.50

6IPG-K 20 Watt Amplifier. With built-in preamplifier and all controls. Modern flat compact design for tabletop or Cabinet Installation. Shpg. Wt. 20 Ibs. In Charcoal and Brass. Complete Kit with instructions .Net 59.50
See your Hi-fi Dealer or write . . .!
Gromines-A Division of Precision Electronics, Inc. Depi. EX.12, 9101 King Ave., Fronklin Pork, Illinois
\square Send complete Kit detoils. \square Send................. Kit.
\square COD ($\$ 5$ enclosed). \square Postpaid. (full poyment enclosed. Enclose name of Deoler, (If any.)

Nome.
Address... .
City. Zone . . . Stote. 10 -day money back guarontee on all Kits

WALKIE-TALKIE Transmitter \& Recelver chas- $\$ 6.65$ NEWI Gyro Low-cost
RADIO CONTROL RECEIVER
Brand New, Complotely
Wired a Teted w Tubs.
Wired a Tested Wion Tube:

Before You Buy-Compare: (27.255 Mc)
The Most Powerful Hand Held
R/C TRANSMITTER ayro Model A-12

- Greatest Power-up to 5 watte input
- Gratetet powerncop kange wo 603289 . milea
: Gyro Magic Tuning indicator-ilimplest tuning
- Completo a Quaranteed with Antonna

RADIO CONTROL Headquarters

For model zirglanes, bonth, cart, otc. FREE CATALOQ "S."." No oporator'i frense requtred. FRite-sEND FOR FCC FORM SoS Garage Door Radio Control Transmitting \& Receiver Kits Avalable. simple Tranam. a
Wound coll. Mes., cond., SIGMA Relay, Instruc....... $\$ 9.95$ Wound Coll. Mel., Cand., sigma Relay, Instruc

 CMSTALS: 27.25s Mc. Poterien 28A....53.95. HOLDEN . 15

RELAY CONTROL UNIT incl. sennitive 10,000 orm sla:
 Alnice v Magnet. Neon Lamp. Reaintors, capacltors. . only 990

 DYNAMOTOR SV/12V NEWI Pocket MULTITESTER 3000 onms per voit, ii

 EADPHONE: Standard, bual 2000 ohim

Induatrial erowth . . . sutombition . . . technical advancea oreato eureer opportunitime Ior oprineers. sccouncanke, manasement experta. Share rewarde awnitiog college inen. Important firma viait anmpue regularly to employ Tri-Btate

Eachelor of Sclence degree In 27 months
Compleve Radio Eagineering course . . TV. UHF. FM, Electronica. Alen degree couraee fo Mechanical. Civil. Elecufical, Aeroni utleal end Chemical Enainesing In so Mondhs B.S. in Aurinesa Adminineration (Cleneral Busineas. Aceountina. Motor Tranaport Menagemont majors), Capable mudente may aceelerale. 36 -weeke courae ín Draftine.

 nudente whome time budet require aceelerated coursee and modems conte. Pre-
paratory cour eet. Brautiful enmpue in friandly college town. Well-aquipjed.
new and modernited buildinge and laboraforbes. Enter Jube. \&ept. Jan.

140 Wealthy Manufacturers Ready to Pay Top Prices

Do you have an idea for a new product or a way to improve a product already in use-patented or unpatented - you would like to sell for cash or lease on royalty? If so, send your name and address on a post card - NOW - for FREE details explaining how you can turn your "Big Ideas"'into big money.
SCIENCE AND MECMAMICS MAGAZINE 450 East Ohlo street Dept. 5513 . Chicago 11, Illinols

Learn Electronics YOUR TICKET TO A BETTER JOB AND HIGHER PAY!

More Jobs Than We Can FIII

Jobs in radio-TV-electronics are going begging. A commercial (not amateur) F.C.C. license is your ticket to higher pay and more intereating employment. We train you quickly - then help you find the job you want!

Learn by Mail or In Residence
Grantham School of Electronics specializes in preparing students to pase F.C.C. examinations. Correspondence training is conducted from Washington and Hollywood; readent DAY and EVENING classes are held in both cities. Either way, we train you quickly and well - NO previous training required. Beginners get first clase license in 12 weeks.

Grontham Irvining is Complete

The Grantham courge covers all the required subject matter completely. Even though it is plamed primarily to lead directly to a first clas F.C.C. license, it does this by TEACHING you electronics.

Our Guarentee

If you should fail the F.C.C. exam after finishing our course, we guarantee to give you additional training at NO ADDITIONAL COST. Read details in our free Booklet.

Two Complete Schoels

To better serve our many students throughout the entire country, Grantham School of Electronics maintain two complete schools - one in Hollywbod, Californis and one in Washington D.C. Both schools offer the same rapid courses in F.C.C. license preparation, either home study or resident clasaes.

Fore's Proof....
that Grantham Students propare for rCC examinations in a minimum of time. Here is a Liet of a few of our recent graduates, the clace of Ucence thoy got, and how long it took them: erem streter cas 5th Mou ort Mr mic. in 11

 Ose Iroses, Sution ROME, Lader, Wye.
 Len Blatom, 31 Calio Centuita, Fiogutell, Arit Cand Dear., he, P.O. Dax 431, Jemoretis, Le

MAIL COUPON TO NEAREST OFFICE

Grantham Schools, Desk M

1505 N. Weatern Ave. 018

821 - 18th Street, N. W. Hollywood 27, Cellf. Waghington 6, D. C.

Please eend me your booklet, telling how I can get my commerclal ICC license quickly. I understand there te no obligation and no salesman will call.

Name.
\qquad
City. Btate. I am interested m : \square Home study, \square Resident Classes
see the amazing new EASY-TO-BUILD ELECTRONIC
 ALLIED knight-kits in ALLIED'S 1958 ELECTRONIC SUPPLY GATALOG ERED BUILD YOUR OWNI SAVE MONEY-HAVE FUN

HI-FI KITS

HOBEY KITS

INSTRUMINT KITS

HAM KITS

SAVE on Everything In Electronics
 form
 WORLD'S LARGEST STOCKS
Everything for Experimenters, Builders, Amateurs, Servicemen, Engineers and Hi-Fi Hobbyists. Get more for your money in $\mathrm{Hi}-\mathrm{Fi}$ systems and components; build-yourown kniget-EITS; recorders and phono equipment; TV tubes, antennas, accessories; Amateur station equipment; test instruments; industrial electronic equipmentplus the world's largest stocks of parts, tubes, transistors, tools and books. Send today for your FREE 1958 allied Catalog!
Everything in Electronics From One Reliable Source
our 37th year
EASY TERMS AVAILABLE

Slightly used crank style CAB. INETS (once used everywhere) for Home Hobby Shops. Complete with transmitter, re. ceiver, bells, crank and shelf (Less Generator). Has ali of the outside parts. Make beautiful, unique Radio Cabinets, Liquor Chests, Spice Cabinets, Flower Planters, etc. Imme: diate deliveries assured. $\$ 7.00$ F.O.B. Chicago.

TELEPHONES

and ALL
SUPPLIES
Room to room, house to sarage. prifate tele. garage. priva
phonesservice.
TANDSET ORADLE plete outfit (2) Com: wire, 2 dry cells. instructions, $\$ 14.95$.
WORM HARVESTER-
Dan Mac Magneto-
gathers fish-worms by lectricity. Complete with Instructions. Se.so.

WRITE FOR ILLUSTRATED BULLETIN BE-2

 MICROPMONE, Dept. BR-2, chicago.zs, lit. ${ }^{2760}$.
Like to Build Models? Try One of These 32 1909 Stanley Steamer, radiocontrolled Model Chevrolet,

 steam-powered Mississippi River boat, an 1834 Hansom Cab, an Oscillating Steam Engine, a Model Colt . 44 Pistol, model circus equipment, model afrplanes, a 4cylinder racing engine-in all 32 outstanding projects, get a copy of our 160-page, "Model Craft Handbook," that is jammed with model plans and Ideas. Xou'll get the thrill of lifetimel Every model is authentic to the smallest detail. Hundreds of photographs and diagrams show exactly H-O.W to proceed. Bills of materials simplify the laying out of the work. Our easy-to-follow instructions explain every detall. Send 50 \& for Vol. 3, "Model Craft Handbook." Satisfaction guaranteed. Catalog of 151 "Do-It-Yourself' Plans, 10%.
SCIENCE AND MECHANIC8

450 Eept Ohlo st., Dept. 8314 Chicago 11, III.

TRANSISTORIZED POCKET FM RADIO AND TUNER KIT

Fun for the youngster or the veteran in the electronics fleld... A 3-way transistorized pocket FM radio and tuner which tunes the complete FM band from 88 to 108.6 megacycles plus aircraft band from 109 to 145 megacycles. This fantastic set can be used in your car, home, or pocket, and needs no antenna or ground wires. Completely non-directional, this compact FM radio and tuner will play where all other radios have failed. Set has been demonstrated under an X-ray beam and near other electrical devices without any static or distortion. Featuring a two-stage circuit, this FM radio and tuner will produce music of top quality from stations located many miles from the receiver. Kit comes complete with easy-to-build instructions.

Kit, Complete, $\$ 13.95$ postpaid.
Special Hi-FI Earplece with earmold, cord, and plug, $\$ 8.50$ postpald.

TWO-STAGE TRANSISTOR AMPLIFIER OR PRE-AMP KIT

You can bulld a powertul two-stage ampllifer or pre-amp which can be used as a phonograph ampliffer or amplifer for a crystal set, and as a pre-amp for crystal or magnetic plck-ups. Kit comes complete with two translstors, volume control with comitch, attractive plastic case with a snap bottom, and is powered with a slngle penlight cell with an output of nearly 3_{8} of a watt. Complete with easy-to-follow instructions. $\$ 5.95$ postpaid.

ALL WAVE KIT

- Installs Easily - Fits Any Radio - Gives Beautiful FM Fidelity

Does the work of regular 8 -tube tuner . . . easily installs in car or home radio. Tunes complete FM band from 88 to 108 mgs . and 109 to 145 mgs. on aircraft FM band. Tuner includes complote wired chassis, switch, tuning knob and diagram.

IT'S HERE-REAL SATELLITE RADIO

-Tunes all short wave bands plus Broadcast Bands. Complete Kit with Transistor, High Frequency Tube-And double head set:
(limit 3 to a customer)

$\$ 995$

postpaid

UNBELIEVABLE-BUT TRUE! FM RADIO TUNER

CIVGLUABLE FOR BECINTERSI

Let Us Demonstrate FREE How Quickly You Can Master Fundamentals of

RADIO, TELEVISION, ELECTRONICS, HI-FI

An ideal way for you to get started in a big-pay career or develop a profitabie hobby is offered in this remarkable new book. Maken underatanding marvels of radio. TV. and HI-FI so simple. Used by scores of schools and colleges to unveil myateries of rapidly krowing use of electronics, One reading gives you complete background essential to determine choice of profesalon. Packed with recent inventions. newminute information for up-to-the minute information for servicemen. techniclans, hobbysty, students. 288 photos, chars, dia-

FREE 5 DAY EXAMINATION Fill out and mall coupon. Pay noth. ing now. Pay nothing to post. man on delivery. simply pay bill after 6 days, or return book.

SCIENCE OF

 MODERN ELECTRONICS MADE EASY
CONTENTS INCLUDE:

Recent Developmente In Eiectronles, Electrical Meesurling In. struments, Oselliatory Clrculte, Electron Tubes, Power Supplles, Ampllfiers and Ampll. ficerion, Tape Recordors, Aceustice, Micro. phones, Jrasmicting and Recolving Antencelvers, Migh Fldelity Systeme, Trensistors Tolovision.

ONLY

AMERICAN TECHNICAL SOCIETY
Dept. DC-1, 848 E, 58th St Chicago 37, III.

AMERICAN TECHNICAL SOCIETY, Dept. DC.
84E. 58th St., Chicago 37, III.
Please send me "Radio.Television and aasic Electronles" for 5 days FREt EXAMINATION. If I heep the book after 5 days, you may bill the for \$4.95, Dlus shipping cests.
NAME
AODHESS
CITY 2 STATE
DCheck here If enclosing $\$ 4.95$ with coupon; we pay shipping charges. Money back guarantee.

186Do If Yourselif Plans
 understand plans for building boats. electrical equipment, models of gas and steam engines, famous firearms, antique automobiles, toys, games, cabin trailers, many other projects. In all, 186 useiul things you can build. It's easy It's fun! And you cansave money! Doit Yourself! Send 10 c now. Science and Mechanics Magazine, 6616 Dunham Bldg.,Chicago 11, Ill.

Electronics School

Midwest's First \& Foremost (Our 27th Year)

10-MONTH RESIDENT SHORT-COURSE

Special 5 in 1 training embraces Electronics, Radio. TV. Communicationa, and Color TV. Prepares for FCC License. Vot Approved. Free placement. Thousands grads coast-tocoast. Also home study. Send coupon for free information. UNIVERSAL TV SCHOOL 804-K Grand, Kansas CIty 6, Mo.

Name.

Age
Address
City.
State
Voterane give discharge date.

all metal equipment-bodies, fenders, ete.
whith this compact, handy portable welder.
properly wired 110 V AC or DC lines, compley operated from with twin carbon are torch and operating instructions. Order today on ten-day money buck guarantee or send for FREE Illusrated Ifterature. Litorature on larger equlpment on request.

FOUR-WAY WELDER CO., Dept. F82-N

1810 s. Federal Street
-
Chicago 18. 111.

THE BIGGEST $25 \&$ BARGAIN IN THE ELECTRONICS INDUSTRY

Yes, just 25¢ will bring you the next 12 issues of our monthly bargain-packed bulletin, featuring: Motors, Meters, Relays, Timers, Blowers, Pumps, and thousands of outstanding electronic devices Just a quarter starts you on the bandwagon of values.

HERBACH \& RADEMAN, INC. 1204 Arch Street, Dept. TV-1, Philadelphia 7, Penna.

for the best in electronics-receivers,
fransmitters, meters, multitesters, trans-
formers, relays, sun bafferies, wireless
headsets, the cream of domestic and
foreign surplus at lowest prices ever!-
send for our new, free, bargain-rich
Ayer!-you'll be glad you did!
ARROW SALES, INC.
sox 3007-SM
North Hollywood, Collf.

UPRIGHT BRASS TELEPHONE FOR LAMPS!

Mouthpiece and receiver bakelite.

ORIGINAL OAK WOOD

Antique telephones:

Write for free llsf of felephones. All shipments F.O.B. Simpson, Pa.

TELEPHONE ENBINEERINO CO.

Dopi. RT
Simpson, Pa.

> How to :Build Your Own Photo Equipment

It's Easy! It's Fun! And you cen save lots of money, tool Oar 160 -page "Photo Craftsman Handbiok expment. Handrede of photos, drawings, diagrams, tables. bills of materiais and step-by-gtep in tructions rake tras eay ment send bapfor this big handbook of plan now 90 "Dolt Yourself"

How to Build-

Complete Triaing FOR BETTER RADIO-TV SERVICE JOBS

Let these two great Ghirard trainhag books teach you to handle ali types of AM, FM and TV service Jobs by approved professional methods-and watch your efficlency and earnings soarl

Each book is a complete service tralning gulde. Each contains the complete data on modern methods and equipmentNot a re-hash of old, out-of-date material. Each is co-quthored by' A. A. Ghirardi whose iamous RADIO PHYSICS COURSE 20 years more widely MODERN RADIO SERYICNG Were, used for millitary, school and home study training than any other books of their type?

THE NEW Ghirardi radoo-tv Strvice library

Amost 1500 pagea and over 800 clear illustrations show tep-by-atep how to handle every phase of troubleshooting and servicing.

1-Radio and Television Receiver TROUBLESHOOTING AND REPAIR

complete ruide to profitable professional methode. For the beginner, it is comprehensive trining course; For the mperfenced kerviceman, if is a quick way wo "brush up" on specithe jobsilte gevelop iraproved eechniquen or to And fast answers to puzilis, 8 geryice probleme. Includes invalusble step.by

2-Radio and Television Receiver CIRCUITRY AND OPERATION

This be9-page volume the then puide for servicemon who realIze It, pays to know, hint really maike modern radio-TV tecelvers "tick" and why, Givea complete understandint of besic circuls to and circult variations; how to recoknize in aervicing them. il7 lifus. Price separately s8.75.

Special low price . . . you save \$1.25

If broken Into laseon form end sent to you as a "course"" you'd regand these two great books as burgiln at 350 or more! the two books-and have the privilege of payint in casy instatimenta while
you wie them! No tewsons to wait for. Jou loern fantand right

```
-=- STUDY 10 DAYS FREE! ---= 
Dept. MM-O, RINEMART & CO.: Inc.
233 Madison Ave.. New York 1e. N. Y. EXAMINATION. In 10
days I whll elther remit price indiceted
TELUR
$7.50 separately
[ RadIo & TV CIRCUITRY G OPERATION (PrIC 86.75
\square Check here for MONEY-$AVINQ COMBINATION OFFEN
peclel prlce of only si33.00 for the two. (Regular price
potrage after 10 daye if you decldo to keed books and s3, %
Name . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .
Address . . . . ..............................................................
City. Zone. SLrte. . . . . . . . ....................................
Outside U.S.A.-$8.00 for TROUBLES OPERATION: $14.00 for both. CaEB
oniy, but money refurded tf you return books in 10 days. Cazb
```


With H. G. Cisin's Copyrighted rapid "TV TROUBLE SHOOTING METHOD"

Without experience or knowledge, this guaranteed now method of servicing TV sets ensbles you to DIAGNOSE TV troubley as radidly as an expert. NO THEORY-NO MATH-you can locate all faults to record-breaking time regardless of make or model
"TV TROUBLE SHOOTING METHOD" is the most raluable ald to TV servicing ever written. Be a TV Trouble Dlagnosti. clan. Increase your dreseat earnings. Open your own Proflable Buatness or get a high-paying skilled job

If's all in this book
Nothing more to Pay-Nothing else to Euy Alphabetically listed are 85 pleture troubles, over 58 raster and 17 sound troubley. By this unique copyriehted method you know EXACTLY WHERE the trauble 1s: plus step-by-step lastructhons, Including 69 RAPIU CHECKS, help to find laulty part. STRUMENTS! Of the 69 Radid Checks, OVER 65 ALSO REQUIRE NO INSTRUMENTS! Rapld OVER 65 ALSO gency checks for distorted pletures defectipe include emergency checks for distorted pletures, defectipe tubes including PIXNGUAGE, plus PERFORMEDLL EXPLAINED IN SIMPLE MANY CHECKS USE THE PICTURE TUBE AS U MENTB, H. G. Cisin. the suthor, is the inventor of the AS A GUIDE. radio. He lisenses RCA ${ }^{\text {H }}$ is the inventor of the $A C / D C$ midget gands of techniclans now owning their own prosperout trat thouorganizations or holding hlebly pald TV positlons experience are embodied in this par

Guaranteed Money Baek In 5 Days if Not Rut
ABSOLUTELY FREE with each order: Your cholce
of CIsin's newest books: BASSE ELBTRICITYG
Vol.

RUSH COUPON NOWI
A. G. Cisin, Consulting Enginear-Dept. SM17

Enclosed tind.
Enclosed find S1. Rush Trouble Shooting Method and free book
Name
Addrese
City
Zone itate.

USE IT 10 DAYS FREE! Coupon below brings you TELEVI. SION SERVICING on FREE trial for 10 day, without coit or obilgatlon. Mall it NOW.
TV repalr
r. TV repalr . . . how idohow to install gets and tubes... how to adjuat the lon trap up-to-date information on color, UH , etc, etc. Containg complete.
Mr. C. w ,

Mr . C . W, Morris of Charleston. W. Va. Says. "relevisio $\$ 200.00$ for courses that heves't elven have pald at mueh a this book has. courses that haven't given me the cloar underatand ling Prentice-Mall Inc. Dept. s7it-A!
Englewood Clifs, New Jerser
Withd me TELEVISION SERVICING for 10 daye FREE TRLAL. Within 10 daya 1 monthe.
Name

Adurese

city . Zonestate
I SAVE!

No need to search around to find ALL the parts to bulld the Wrist Radio described in last issue of Radio-TY Experlmide, We supply st grade metal transistor, micro-giass knob, both ceramic bake chazsia plate, tuning coll \& wire-uverything for $\$ 8.95$ posthery $11 / 2 \mathrm{v}$. hearing ild for $\$ 8.95$ postpaid. Set uses only 16 c your town. Set worke with sold by hearing aid dealers in we'll furniah a real minlature hasiag ald phone for $\$ 3.78$. Do not confuee with cheap imported phones which rarely work.

PEETMEE RADIO $\$ 3.95$

Thls tet has pulled in stations 1500 novel radio brondcester cribed in inst issue of facio. Ty doperimenter. All parte furnithed to that radlo can be chane ted from radio to ronarer or vice versa.
You tet components for both profects miniature phon evailable at 33.78 Hearing aid battery avallable from locai hearing ald dealera at same price wo

WE PAY POSTAGE OA ALL OROERS. SEND CMECK OR MONEY. ORDEA. DO NOTNISK CASH. GORRY. NO C.O.D. WITHOUT.

ELECTRO-MITE noo. U. s. Pat. ofr.
SPRINGDALE EBEX CONN.

BEGINNERS CODE COURSE

 TO CODE SPEEDEspecially designed for the beginner. Teaches the basic principles of code op--ration scientifically.
Here's your chance to learn quickly and easily . . . to get maximum speed and proficiency in code . . . right in your own home. You can save time and money learning the fundamentals of code sending and receiving and the principles of fast, efficient opPicture yourself at your own transmitter . . sending out radio code, messages that will be recelved around the globe. Ies, operators are waiting to communicate with you today, tonight or any time. The knowledge of the world... intimate iriendships you will gain ... may help you in your business, may be a stepping stone to success.
Wouldn't you like to be the invaluable link with the outside world in time of disaster?
Or to serve in a national or local emergency? Be ready for service when the opportunity arises! Learn telegraphy now-the Candler way.
For 46 years the CANDLER SYSTEM has trained beginners for all telegraphing requirements, all operator licenses, highest ratings, and FCC specifications, both amateur and commercial. The record of famcus amateurs and expert operators who learned the Candler way is proof of what the Candler System offers you. Send for details today! erating with the world-famous CANDLER CANDLER SYSTEM

Dept. 18, P. O. Box 928
Denver 1, Colorodo

ENGINEERING Home Study Courses

COURSES written by world authorities in all branches of engineering. Step-by-step instructions using methods proved successful by thousands of our graduates. One hour each day in your spare time will start you off to higher pay, security, prestige. Check the course you are interested in and we will send you a complete outline of the course with a booklet describing the Institute and our advanced methods of teaching. Send to: Canadian Institute of Science and Technology Ltd., 679 Century Bldg., 412, 5th St. N.W. Wash., D.C.

Civil Eng. Surveying Archiltecture Forestry Mining Structural Mechanical Eng. Industrial Eng. 8 Management Refrigeration Heating Drafting Plastics Electrical Eng. Radlo Electronics Televislon AeronauticalEng. Alrcraft Englneer Navigation General Education Chemical Mathematics Journalism Accounting ${ }^{1}$

NAME
 ADORESS.
 CITY
 STATE
 Course Interested in.
 Canadians: Send to Canadian Institute of Science \& Technology Limited, 679 Garden Bldg., 263 Adelaide St. West, Toronto, Ontario.

GOOD JOBS . . . MORE MONEY SECURITY... ALL CAN BE YOURS
YOU are needed in the great modern Tele-vision-Electronics industry. Trained technicians are in growing demand, at excellent
pay, in sales and service, manufacturing. pay, in sales and service, manufaccuring. research, and many other important branches of the field. National Schools Master ShopMechod Training, with newly added lessons and equipment prepares you in your spare time right in your own home for these fascinating opportunities. OUR OUTSTANDING METHOD IS PROVED BY THE SUCCESS OF GRADUATES ALL OVER THE WORLD!

youk trainimg is all imclusive

We prepare you for a long list of iob opportunities. Thousands of TV and Radio receivers are being sold every day-more than ever before. And, now, Color TV is here. Applications of Electronics in industry -AUTOMATION-are growing in tremendous strides. The whole feld is alive opening up new, important jobs rapidly. National Schools complete training program qualifies you in all phases of the industry.

YOU CARM WHILE YOU LEARM

Many students pay for their entire training and more - with spare time earning. We'll show you how you can, too! Early in your course you receive material that shows you how to earn extra money servicing TV and Radio receivers, appliances, etc., for friends and acquaintances.

you ent tivartuing you mete

Clear, profusely illustrated lessons, shopcested manuals, modern circuit diagrams, practical job projects-all the valuable equipment shown above-many other ma. terials and services - consultation privilege with our qualified staff, and Graduate Employment Service. EVERYTHING YOU NEED for ourssanding success in Electronics.

moustry midd you. mational scmeols

 WILL TRANM YEN. SEMD FOR BACTS TODAY no oblucation.YOU LEARN BY SHOP METHOD
you do servicing, circuit enalysis, and do over 100 down-to-eath experiments. You build a Superher Receivet and a modern TV Receiver, from the ground up, including a new, big screen picture tube. You also re. ceive a professional, factory-made MULTITESTER. All of this standard equipment is yours to keep ... at just one low tuition

Signal Vrucing Troubleshooter

Troubleshooter and probe unit (speaker is mounted in top of cabinot). Drawing (left. below) gives front panel desig. nations of switches and jack inputs.
triode (V1 in Figs. 4 and 5), has a high input impedance (12 megohms) and can be used in grid circuits without loading. A meter rectifier permits measurements of audio frequency or ac voltages, making AF voltage gain measurements possible during tracing, and a polarity switch permits measurement of both positive and negative dc voltages without reversing test leads.

The signal tracing section is a high-gain ampli, fier fed through a crystal detector, permitting the signal to be checked in either RF, IF or AF sections. The detector is mounted in the probe unit, minimizing loading in RF stages. The probe unit also contains a switch which transfers the probe tip from the amplifier to the

0NE of the handiest tools for servicing work and design testing is the signal tracer, which permits a check of the signal at all points from the antenna (or input) to the output of radios (or amplifiers). Used in combination with a voltmeter and test speaker, virtually all trouble-shooting can be done not only easily but in a minimum of time. The unit shown in Fig. 1 combines the three needs for this type of troubleshooting, allowing an audible check of the signal at any point in the circuit, a voltage measurement at any point, and a speaker test. It also functions as a utility amplifier, an extra vacuumtube voltmeter, and a utility speaker.
The VTVM, a simple bridge circuit using a dual
voltmeter to permit voltage measurements at signal check points without changing leads, plugs, or reaching to the unit itself to throw a switch.
For utility service, inputs may be fed into the amplifier at either of two gain levels, and the output transformer secondary and built-in speaker voice coil are each available on jacks on the front panel, for testing other speakers, and for using the built-in speaker as a test speaker.
Both the VTVM and signal tracing amplifier are powered by a transformer-type power supply which isolates the unit from the power lines.
Figure 2 shows the probe unit details. The probe housing is a small chili powder can with a screw top. The probe tip is mounted on a small

MATERIALS LIST-SIGNAL TRACING TROUBLESHOOTER

Desig. Description
S2-2 pole, 6 pos., rotary (Mallory 3226 J)
S3, S4-DPDT toggle
S5-SPDT toggle
S6-SPST topole
J1-3 cond., open ckt. Jack (Mallary SCA-2B or JK-33A)
J2, $\sqrt{3}, ~ \sqrt{4}, ~ \sqrt{5}-2$ cond., closed ckt. Jack
L-8 hy., 75 ma. choke
T1-500.0.500 v. @ 70 ma., 5 v. @ 2A., 6.3v. @ 2.5A. power tralls. (Stancor PM. 8403)

T2-5000 ohm to VC output trans.
V1-6SN7
V2-6S.J7
$V_{3}-6 C 5$ or 6.5
V4-6V6
V5-5W4
$M R-B r i d g e-t y p e ~ m e t e r ~ r e c t i f i e r ~$
M- 0.1 ma. meter
PL-Pilot lioht assembly
Spkr-4" PM speaker (3.2 ohm VC)
D1-1N34 crystal diode
Miscellaneous: $2 \times 7 \times 9^{\prime \prime}$ chassis; $7 \times 8 \times 10^{\prime \prime}$ hinged cover cabinet (ICA 3826); octal sockets; terminal strips; knobs; feed-through insula. tor; solder; wire; etc.
feed-through insulator and can be equipped with a needle point assembly from an old test prod. Since the can is so small (about $11 / 2$-in. in dia. and 3 in . long) there is a trick to assembling the unit. Drill a hole in the center of the bottom of the can for the feed-through insulator, a hole in the side of the can for the microswitch, a hole in the center of the top of the can for the cord, and a mounting hole in the side of the can, opposite the hole for the microswitch, and near the open end of the can. Solder a 6 -in. length of wire to a soldering lug, and mount the feedthrough insulator and lug (as shown in Fig. 2) in the bottom of the can with a long bolt, with the wire extending through the open end of the can.
Next, solder the diode leads to the single terminal strip and to the capacitor as shown, and solder the other capacitor lead to the proper terminal of the microswitch. Then solder the three cord leads to the terminal strip and microswitch as shown. Cut the wire from the feedthrough insulator as short as possible, and solder it to the remaining micro-switch terminal. Push the micro. switch and terminal strip into the can, first

NOMENCLATURE NOT UNDERLINED INDIGATES LEAD TERMINATION
mindicates Shielded lead
HEAVY BLACK LINE INDICATES COMMON GROUND BUSS

cord through the hole in the top of the can, screwing the top in place. The micro-switch should be wired as shown in Fig. 2 so that pressing the button transfers the probe tip to the voltmeter.

Figure 3 gives the chassis layout for the entire unit, Fig. 5 the schematic wiring diagram, and Figs. 4, 6 and 7 the pictorial wiring diagrams. To minimize hum in the amplifier, the power supply is placed as far from the amplifier input as possible, and certain grid leads should be shielded as shown. The voltmeter multiplying resistors (R1 through R6) should be of 1% tolerance, but the specifications on the other parts are not too critical.
The chassis is secured to the front panel by the bottom row of jacks and switches, fastened up from the bottom of the panel enough to clear the lip of the cabinet, which then requires a small "leg" at the back of the chassis for support (see Figs. 6 and 7). The speaker is mounted in the top of the cabinet and is connected to the chassis by a fourconductor cord and plug arrangement, permitting easy removal of
positioning and tightening the micro-switch, and then fasten the terminal strip in place with a small bolt. Check to be sure that no bare sections of wire are shorting out, and thread the
the chassis when removal is necessary.
To calibrate the voltmeter, turn the unit on, allow several minutes warmup time, and set the pointer of the meter to Zero, using R10. Put the

Troubleshooting unit out ${ }^{\text {b }}$ of cabinet showing "leg" on chaisis and speaker connecting cord and plug.
reading (10 v ., as set by the Range Switch) equal to the test voltage. Thus, R13 should be adjusted to have the meter read .6 (on a 0-1 meter scale), 6.0 (on a $0-10$ scale), or 60 (on a 0-100 scale).
One calibration will do for all dc and ac scales except the $0-3 \quad v$. ac scale. Due to the loading of the meter rectifier, a special scale, established by a series of checks with varying ac voltages between 0 and 3 v., will have to be made for this range.
To use the unit as a Signal Tracer, set S5 on "Probe," plug the probe lead into the proper jack, and clip the ground lead of the probe to the ground of the unit being checked. Touch the point of the probe to the various check points, and adjust the Gain control (R18) for the desired signal level. To read voltage at any point, press the button on the probe, making sure that

probe cord in the "Probe" jack, set the Range Switch (S2) to " 10 " v., and connect 6 v . dc across the probe terminals. (It is most important that this test voltage be known to be accurate; an automobile battery source is suggested). With the voltage across the probe terminals, adjust the calibration control (R13) for the proper reading. Since the meter will probably be calibrated $0-10$ or $0-100$, a new scale should be made for the meter face and the "proper reading" mentioned above will be the percentage of the full scale
the Range Switch and the Polarity Switch (S4) are set properly.
To use the unit as a Test Amplifier, set S5 to "Jack," and feed the signal into the amplifier through the High Gain jack (J2) or Low Gain jack (J 3), depending on the gain you require for your test.

To test a questionable speaker, feed a signal into the amplifier as you would to test amplification, and plug the questionable speaker into the "Output Transformer" jack (J4) on the front panel of the unit.
To use the built-in speaker as a Test Speaker, plug the desired output signal into the "Test Speaker" jack (J5). In this use (and in the questionable speaker test using the "Output Transformer" jack, J4), the output of the amplifier and the built-in speaker voice coil both have an impedance of 3.2 ohms.
To use the voltmeter separately, the probe can be used (with the button pressed), or a separate set of test leads can be made, terminating in a three-conductor plug (using Ring and Sleeve only), to be plugged into the "Probe" jack on the front panel.

Top view of designer's chasbis ready for use. Tube socket adapters are on elther side of chassis.
are provided; these can be tapped on exposed bus wires at any point down the center of the chassis, but, if only a single plate voltage is used, a switch parallels these leads. The input and output connections are both clip and jack type, and each also appears on two two-terminal tie points (input shown as "W" and output as "Y" on Fig. 3). This makes input and output available both near the tubes and also near the transformer mounting space. Wiring for these units is shown in Figure 4.

A ground (B-minus) clip at the back of the chassis connects to an exposed bus wire that runs down the center of the chassis, across the center, across the front, and part way down each side, permitting con-

Designer's Experimental Chassis

N experimental circuit design work, a chassis on which parts can be readily changed and substituted for one another, where any type tube can be used, and where a minimum of wiring is required, is a real boon to designers, saving them both time and temper. Without such a chassis, experimental results are often disappointing due to haywire test rigs. This experimenter's chassis will give "permanent construction" results while still retaining the advantages and simplicity of haywire rigs.

Test circuits for up to two tubes are provided on this chassis, plus a number of features that reduce wiring problems. By the use of socket adapters, any tube (up to nine-pin base) can be used, and there is space on the chassis for small transformers, relays, and other circuit components. All connections (except input, power and output) are soldered, yet components can be changed without disturbing other components connected to the same terminals.

Input, power and output connections are at the back of the chassis; two filament inputs are provided, but if tubes with the same voltage are being used, a switch parallels the filament leads to the tubes so that only one power lead need be connected. Similarly, two plate voltage inputs
nection to ground virtually anywhere on the chassis. Each tube socket has nine exposed sections of bus wire-one for each pin-for connections. In addition, six of the tube pins also have lug connections around the opposite side of the other tube, parallel-connected with the basic tube socket bus wires. This arrangement provides convenient connection from pins of one tube to those of the other without running a lead across the chassis. (The parallel connections are made permanently under the chassis.) Each tube pin is numbered with decal letters, both at the tube location and at the paralleling lugs on the other side of the chassis. Also located around each tube socket are seven pieces of isolated bus wire to serve as tie-points or multiplying connections.
At the front of the chassis are two open spaces with a series of mounting holes for varioussized transformers and other, similar electronic parts. On the outer side of these spaces are the two-terminal tie points that parallel the input and output, and on the inner side are two other two-terminal tie points for miscellaneous transformer connections.

A steel panel with five $3 / 8-i n$. holes and five $1 / 2$-in. holes for mounting potentiometers, switches, etc., serves as the front of the chassis. Just behind this panel are two five-terminal tie points (one on each side, " V " and " Z " in Fig. 3), and one six-terminal tie point (" X ") in the center. These are for connections to panel-mounted components and are parallei-connected to similar tie points at the back, of the chassis near the tube sockets. The bus wires are held in place by screws and are raised about $1 / 32-\mathrm{in}$. above the surface to permit leads from capacitors, resistors, and other Gircuit components to be slipped under them before "tacking" with solder.

Any tube can be used on the chassis by building tube socket adapters as shown in Figure 6.

In all cases, the bottom plug is a nine-contact octal, to match the sockets in the chassis; the upper socket matches the desired tube. Connections between the two are made in pin number order, so that, in many cases, there will be no connection to Pin \#9 on the chassis. However, Pin \#1 on the chassis will always be Pin \#1 of any tube used, and so on.
The top of the chassis is $1 / 8-\mathrm{in}$. tempered hardboard mounted on $1 / 4$-in. plywood. The tempered surface of the hardboard is not easily damaged by solder, the plywood provides strength. To make the tube socket connections and to simplify transformer mounting, portions of the plywood (shown as light dotted lines in Figure 3) are cut out before assembly starts.
The simplest means of drilling all of the holes required is to make a full-size drawing of the center points from the dimensions shown in Fig. 2. Tape drawing to board and center-punch holes for drilling.

After the holes are drilled, temporarily screw-fasten the hardboard to the plywood (after fastening the $11 / 4-\mathrm{in}$. side and front pieces to the plywood, as shown in the photo, Fig. 5). Run the ground wire first, using bare \#16 tinned copper wire. If regular bus wire is not available, straighten coiled wire by placing a length between two boards and rubbing the boards together so that the wire rolls between them. Since this wire is stiff, each above-board section should be made individually and connected under the

chassis, rather than trying to make a series of bends.
Run the B-plus wire next, using the same type of wire, again making connections under the chassis. Next place the miscellaneous bus wires, each with a screw at both ends, using bare \#18 each with a screw at bot
tinned copper wire for this purpose. Where space is available, a washer at each screw, under the wire, helps hold the wire slightly above the chassis.
The tube socket bus wires are bare \#18, soldered to the socket, run up through the hole by the socket, and then to a screw. The $1 / 2-\mathrm{in}$. length between the hole and the screw provides room for connections.
When all surface wiring is done, place the multiplying tube pin soldering lugs, using 4-36 machine screws and nuts. Then screw the various tie points to the top, and complete underchassis wiring.
Wire the tube pin multiplying screws first, by paralleling the appropriate numbered lugs on each side to each other, and then multiply-

Bottom view of chassis showing permanent, underchassis tie-point connectiona. Note filament cllps in place on right-hand tube sockel.
ing one set of such connections to the properlynumbered pin of the tube socket on the other side of the chassis.
The final wiring to be done under the chassis is the input, output, filament switch and B-plus switch. The lead length of the under-chassis filament leads (made of test lead wire) should be long enough to permit the insulated clips to be clipped to any tube socket pin. Two small nails on the inside of each plywood side piece hold the leads in place when they are not being used. In Fig. 5, one set of leads is connected to tube pins, the others are clipped to the nails.
The steel panel is screwed to the front support piece. A bolt goes through the support and is connected to the ground lead, enabling the steel panel to act as a shield from body capacity.
In using the chassis for circuit design work, the proper tube adapters are plugged in and the filament leads connected to the proper pins under the chassis. Then transformers and other "mountable" components are bolted to the chassis, and panel items are fastened to the panel. Wiring is done by slipping component leads under a bus wire, in a lug, or in a terminal tie point, and tacking them in place with solder. In a few cases, short leads of jumper wire may be required, but the multiplying characteristics of the various tie points and tube socket lugs usually makes this unnecessary.-W. F. Gephart.

Designer's chassis in use, two-tube amplifier under test.

Insulated-Wire Tesłer

- Convert your Christmas tree lamp tester for insulated-wire testing. Solder an insulated wire lead directly to toothed electrode so temporary connections can be made to insulated wires in radio and electrical test work. Sharp teeth on the tester cut through the insulation and contact

the wire without damaging the insulation. Connect 2 of these testers to an ac voltmeter for electrical work, or, to a volt-ohm-milliammeter for radio service work and experimental work. Testers have fiber handles which make them safe for use on high voltages.-Arthur Trauffer.

Vacuum Cups as Cushions

- Radio amateurs and experimenters find that vacuum cups with a machine-screw molded in and a thumb-nut attached, make good rubber cushions and shock absorbers on a receiver or transmitter chassis. Sketch shows a gang-condenser held and cushioned on chassis, a sub-as-

sembly panel cushioned and held to chassis, and chassis itself cushioned from operating table. In latter case, cups also keep chassis from sliding and scratching furniture. Cups are sold in most supply stores.-Arthur Trauffer.

冓
 Spit-Powered Oscillator

A Scotsman's Delight

By C. F. ROCKEY

AYE, LADDIE, if you've got a bit of the Scots in you-or even if you haven'tyou'll ken this thrifty little oscillator. Its source of power is tap water-or spit-and it's just the thing for code practice, for circuit continuity testing, for capacitor checking, and for use as a signal source when adjusting hi-fi or public address amplifiers.
To build it, first saw, sand smooth and shellac a $3 / 4-\mathrm{in}$. piece of soft pine or plywood to a 4×4 in. block. This is your oscillator's chassis. Next, physically modify the driver transformer by bending the bottom fastening lugs away from the core and removing the mounting frame, finding the dividing point between the " E " and the "I" sections of the core (see Fig. 3) and-care-fully-prying up and removing the "I" section. Set the "I" section aside, re-insert the modified core in the transformer's frame and bend the fastening lugs in place.

We used a Thordarson 14-D-93 interstage audio coupling transformer (4:1) that we had on hand, but this type has been discontinued by the manufacturer. Its closest present Thordarson equivalent is the $20-\mathrm{A}-16$ interstage transformer. This -or any similar transformer made by any other manufacturer-will work just as well in the oscillator's ultra-simple circuit.

When transformer is modified, mount it and all other circuit components except the angle brackets on the wood-block chassis (see Fig. 4), with $1 / 2$-in. \#6 r.h. wood screws. Before mounting the two angle brackets, clean their facing surfaces carefully with sandpaper or steel wool. Mount them with faces about $1 / 18$ in. apart.

Make all connections to the transistor connecting lugs before mounting the transistor to avoid

A quick dip of the blotting paper, place it between the brackets, and you'fe sot tho set to buszing, ready to key off for code practice.
any possibility of damaging the transistor with soldering heat. When all wiring is complete (see Fig. 2) and checked, put the transistor into the circuit by clamping its leads under the appropriate soldering lugs and screwing them tight. (The transistor lead adjacent to the red dot is the Collector, the center lead is the Base, the remaining lead is the Emitter.)
Spit Power. Strictly speaking, the source of power for this oscillator is not spit or water. Water is simply the electrolyte of a simple voltage generating cell whose plates are the dissimilar metal faces of the iron and brass brackets. Immerse a piece of blotting paper (about $1 / 2 \times 11 / 2$ in.) in tap water, or moisten the paper with saliva, insert it between the bracket faces and you will have a source of power for your oscillator. What you're doing, is duplicating one of the first steps taken by Alessandro Volta (17551837) in developing the world's first battery (or pila, as Volta called it). Volta found that if two dissimilar metal plates (he used copper and zinc) were separated by moist paper, a current would

flow between them when their outer surfaces were connected together.

Ordinary tap water usually contains enough impurities to act as an electrolyte; saliva, too. But if you don't get oscillation with either used as an electrolyte, do as Volta did, use a dilute salt solution, $1 / 2$ teaspoonful of table salt in a small glass of water.

To test the unit for oscillation, connect a highimpedance (2000 to 4000 ohms) pair of earphones across the output terminals and listen for a clear, smooth tone of about $500-1500$ c.p.s. If you
don't hear such a tone, check the wiring and transistor connections for correctness and if these are as they should be insert a $11 / 2 v$. dry cell temporarily across the brackets (plus side of cell to the brass bracket). This will give you a check on the transistor's condition. If it's good, oscillation will certainly occur. If not, substitute a new transistor in the circuit. (CK722's have proved unusually reliable in this simple circuit, but any other good PNP transistor may also be used.) Also, if you have used a transformer other than those specified in the Materials List, see if reversing its primary connections helps the tone.

With the unit operating, it can be used as a code-practice oscillator (see Fig. 5A); as a con-tinuity-resistance checker to locate open circuits (Fig. 5B) -in circuits up to $10-\mathrm{megohms}$ resistance if you use sensitive phones; as a capacitor checker (Fig. 5C); and as a signal source for 'audio amplifier testing (Fig. 5D). If too much hum is present for best audio amplifier testing, put the oscillator in a grounded coffee can and bring the shielded cable out through a hole in the can's top cover.

In capacitor testing, a good paper or mica capacitor in the capacity range of .001 mfd to .1 mfd will slightly weaken the signal and noticeably change its frequency. An open capacitor will have no effect on the signal, a shorted capacitor will kill it. (It is not recommended that you test electrolytic capacitors with the oscillator.)

Heavy Current Relay

- This little relay will handle as much as two amps. without trouble. Remove stationary contact of an electric bell or buzzer and turn it around. When current flows through coil, armature is pulled in and it makes contact with stationary member.-R.F.Y.

Better Soldering

- When using non-corrosive soldering paste flux for radio work, first warm the joint slightly with the soldering iron, then apply the paste with a piece of wire. The small amount of flux which melts on the joint is entirely adequate. Excessive flux spreads to adjacent insulation, causing leakage.

Depending upon the circuit employed, motors, lights, alarms, ofc. can be photo-electric controlled by as little as a lead penctl intercepting the beam of light.

The 930 photocell employed in the unit shown in Fig. 1 is its prime mover, its master control. When light strikes the 930 , the relay energizes because the potential on the grid of the OA4-G has been changed (see Fig. 2) to permit greater electron flow to the OA4-G's plate and, thus, through the relay's coil. The same unit can be wired to de-energize an energized relay (see Fig. 4), still using the photocell as prime mover. In the de-energizing circuit, the photocell changes the potential on the grid of the OA4-G so that it will act as a shut-off valve, interrupting the flow of current from cathode to plate and thus through the coil of the relay.

The controls shown in Figs. 2 and 4 employ the most economical and least complicated of possible circuits. The triode OA4-G cold cathode used is a gas-filled, glow discharge tube. When it is conducting, it glows a deep purple. The unit can be used as shown in Fig. 1 for experimental or educational purposes, or it can be enclosed in a metal or wood cabinet, with a small opening opposite the photocell, to perform more serious tasks.

Construct the $11 / 4 \times 3 \times 31 / 2 \mathrm{in}$. chassis from a piece of sheet steel or aluminum measuring $51 / 2 \times 6$ in. Scribe the piece $11 / 4 \mathrm{in}$. on all sides, cut out the

3
PICTOLIAL RELAY ENERGIZES WHEN LIGHT STRIKES PMOTO CELL

14 and 8 can cause either circuit to operate erratically. In fact, touching these pins with the fingers will cause the circuit to operate. A dirty socket should be cleaned with denatured alcohol after soldered connections have been made.

Since each control uses identical components, no harm will be done if you later wish to rewire your original circuit. In fact, either circuit can do identical jobs because the relay is a S.P.D.T. type. However, the right circuit for a particular job is the circuit that keeps the relay deenergized except when the photocell is to be influenced by the presence or absence of light as called for by the job.

Figures 2 and 3 show the 930 photocell wired to produce a positive potential on the OA4-G's "grid" (starter anode) when the 930 is made conductive by, say, a fire, daybreak, or beam of artificial light. This hook-up can be used to turn on yard
corners, and bend the panel to shape in a vise. Cut two 1 in . or $11 / 8 \mathrm{in}$. holes on the top of the chassis for mounting the two octal tube sockets, and drill a $1 / 2 \mathrm{in}$. hole between the socket openings for a $1 / 2$-in. rubber grommet. There is ample room on the chassis top, so location is not critical. The relay coil and contact leads are passed through the rubber grommet. Finally, two $1 / 8 \mathrm{in}$. holes-spaced as needed-are drilled on the top of the chassis for mounting a 5000 ohm, S.P.D.T. relay. Location of these holes will depend upon the make of relay employed.

To make the control completely flexible, power line input and relay switch contacts terminate on a Cinch-Jones barrier strip mounted on the front apron of the chassis. Provide the apron with a $1 / 4 \times 3 \mathrm{in}$. slot directly behind the upper row of terminal screws, remove these screws and solder the leads into the threaded bushings. Your electronic parts dealer may be able to supply a terminal strip with soldering lugs, but we prefer the arrangement shown in Fig. 1.

Depending upon whether you want to energize a relay, or de-energize it, wire as shown in Figs. 2 and 3 or 4 and 5 . While many relays are small enough for such under-chassis mounting, topchassis mounting is advised. This allows the experimenter to adjust the relay's contacts and armature tension, and also to see it in action. Note that only pins 4 and 8 of the 930 photocell and pins 2,5 and 7 of the OA4-G are used. Other pins on their tube bases are dummies. Therefore, any blank lugs on their tube sockets may be used as solder tie-points for securing component leads, The electrolytic capacitor, for instance, may be secured to blank socket lugs to insure rigidity.

Make soldered connections to the photocell socket as clean as possible. Leakage across pins
lights, operate motor driven garage doors, etc. At all other times, the control rides on the power line and draws almost zero current. There is no heat or wear on the components, and years of troublefree service are assured.

Figures 4 and 5 show the 930 photocell wired to produce a negative potential on the OA4-G's starter. As long as a beam of light plays on the photocell's light sensitive cathode, the starter grid of the OA4-G has more negative voltage on it because of the photocell, than positive bias (fixed d-c potential) arriving via the 10 megohm resistor. The OA4-G tube, therefore, does not conduct. Breaking the beam focused on the 930 , however, stops the flow of electrons through it, making the positive voltage through the 10 meg ohm resistor the master. The OA4-G instantly fires (conducts), the relay pulls in and, say, the burglar alarm sounds.

Only the experimenter who builds and experiments with these circuits will be able to appreciate their possibilities. The operation of either arrangement is virtually foolproof except for minor relay adjustments. The original control employed a Sigma Type 4-F relay with an 8K (8000) ohm coil. Sigma relays are slightly more expensive than other makes because they provide

MATERIALS LIST-PHOTO-ELECTRIC CONTROLS

Description

No.
10.
$51 / 2 \times 6^{\prime \prime}$ light steet or aluminum
molded or wafer octal tube sockets
930 photocell
0A4-G cold cathode triode
Cinch-Jones barrier terminal strip \#5.141
5 K (5000) ohm relay (Potter-Brumfield LS. 5 or LM-5, or equivalent)
$11 \mathrm{~K}(1000)$ ohm, 1 watt resistor
$110 \mathrm{M}(10$ megohm) $1 / 2$ watt resistor

5 PICTORIAL AELAY OE-ENERGIZES WHEN LIGHT STRIKES PhOTO CELL
precision adjustment of contacts and of armature tension. However, the inexpensive 5 K relays made by Potter \& Brumfield work quite well in
the circuits, though it may be necessary to make minor spacing adjustments of contacts and to reduce the armature tension of the fixed coil spring, for optimum relay sensitivity.
Potter \& Brumfield relays are provided with silver contacts which will handle loads up to 5 amps. at 110 v . (550 watts). The Sigma relay contacts are rated at 2 amps . (220 watts). Where greater loads are involved, an auxiliary magnetic contactor or mercury plunger type relay must be used, and the photo-control relay contacts operate the coil of this power relay. A heavy motor or load is handled by the power relay's silver contacts or mercury solenoid displacement. Power relays are made in a variety of sizes and types, including "lock-in" relays which, when momentarily energized, lock and continue to sound alarms, etc. until manually released.
A typical use of the circuit shown in Figs. 2 and 3 might be to run a motor. A 110-125 v. source is connected to terminals \#1 and \#2 of the terminal strip and one wire of the motor is also connected to terminal \#1. A jumper lead is connected across terminals \#2 and \#3 and the remaining motor wire is connected to terminal \#5.
Light (a flashlight, for instance) activating the photocell causes the relay armature (terminal \#3) to close the relay's normally open contact (terminal \#5) and the motor runs. To reverse this action, move the motor lead on terminal \#5 to terminal \#4. Now the motor will continue to run until light strikes photocell. The combination of circuits and double throw relay contacts makes possible a great variety of electrical functions-starting one device and stopping another by employing both the normally open (NO) and normally closed (NC) relay contacts.-T. A. B.

Plastic Lead-in Window Insert

- Most radio amateurs know that clear polystyrene window panes are available to replace glass panes so lead-in can be brought in without drilling glass, but fitting in a triangular corner saves the cost of a whole pane.

Remove the glass pane and cut off the corner, not more than 4 in. along either side. For about 20c you can get enough $3 / 32$ in. polystyrene plastic sheet to fill in the corner. Drill through the plastic corner for lead-ins.-Arthur Trauffer.

Handy Reel For Solder

- Small household packages of solder that are not regularly supplied on a reel can be transferred onto a handy dispenser and holder by coiling them on a used adhesive tape reel as shown in the drawing. This does away with much of the direct contact with the solder and any escaped flux. Cut a hole at the side of the can for uncoiling the solder. A wedgeshaped notch at the side of the hole will lock the solder from receding back into the can.

How to Get the Right Tape Recorder

By MILT GRASSELL and DON HUNTER

That first "muh-muh" will
be just as raluable to you
in years to coma as the
"mi-mi-mi" of a world-
famou mezzo-soprano-
probably more valuable.
But you can capture them
both for poterity with a
tape recorder. Recorder
shown here in a Bell and
Howell TDC Stereotone.
your investigation is with the mechanical features of the various makes and models; then go on to check the electronic features.

MECHANICAL FEATURES

Motors. The number of motors is often directly responsible for the quality of the recording. A constant tape speed is required for high fidelity. When this speed varies-even slightly-flutter and wow show up. Flutter is an unsteadiness of sound, volume, and pitch, caused by rapid variations in the tape

FIRST words of an infant-size Junior Miss, Elvis Presley, trial summations, hen-house tunes-even TV pictures-can be captured with a tape recorder, the right tape recorder. To get that right recorder you have to know, before stepping up to the counter: 1) what type of material you're going to want to tape; and 2) what equipment is equal to the task.

Tape recording has become one of the hot divisions in the home appliance field. One reason is that prices are down. True, some custom-made sets cost more than $\$ 20,000$; and professional sets range from about $\$ 300$ to $\$ 3600$ in price. But for $\$ 75$ to $\$ 300$ or so you can get excellent home units. (And, after you've paid for the recorder, additional costs for tapes-tapes that can be erased and re-recorded more than 3,000 timesare minor.) A recorder that cost about $\$ 150$ ten years ago, sells for around $\$ 90$ today-and it's a better machine today than it was 10 years ago, simpler and more economical to operate.

The latest recorders are also more versatile than models were back in the 40 's. Business firms, for instance, protect their property with tapes of stern, commanding voices calling for police and telling burglars the jig is up. And hen house custodians find that taped music not only pleases Pertelote, it coaxes greater egg production from her. So what qualities should you look for in order to get the right recorder for your purposes? Well, the best place to start
speed, usually noticeable in the higher frequency ranges. Wow is a wavering of sound similar to that produced by a disc record rotating at an uneven speed.

Flutter and wow are reduced by having separate motors (three are best) for (1) the capstan (it pulls tape at a constant linear speed), (2) the supply (feeding) reel, and (3) the take-up reel. Separate motors also minimize tape spill (tape that continues to unwind after the capstan has stopped) and tape breakage due to jerkiness.

Fast Forward and Fast Rewind. Sometimes you will need to get from one part of your tape to another. That's where the fast forward and fast rewind controls come in. It's a good idea to pick a machine with a forvard and rewind ratio of 10 to 1 or greater.
The Selection Locator control quickly locates programs on your tape. (Also called index counters and program indicators). While this control is not essential on home machines, some recordists find it convenient.

TABLE A
Recording time for 7 -inch (1200 -foot) reel on full. and half-track tape recorders

	Full Track Machine
At $17 / 2 \mathrm{ips}$	2 hrs
At $33 / 4 \mathrm{ips}$	$1 / \mathrm{hr}$
At $71 / 2 \mathrm{ips}$	$1 / 2 \mathrm{hr}$
At 15 ips	$1 / 4 \mathrm{hrs}$

If you're shopping for a tape recorder and have $\$ 1500$-plus. you can get Bell and Howell's Series 866 radio-phonograph-recorder combination shown at right. If you don't happen to have that much at the moment, units such as Webster Electric's Ekotape Model 240 (inset), are averlable for under $\$ 200$.

Two of the least desired types of locators are (1) lines marked under the reels indicating elapsed time sand (2) dial-type pointers indicating remaining time. Neither is very accurate.

An odometer-type counter gives a much more accurate tape location if it is synchronized with some point on the tape each time.

Maximum Reel Size partly determines the kind of material you can record. You can't cram a $14-\mathrm{in}$. reel on a recorder designed for a five-in. reel (except on some machines where adapters are available at extra cost). Be sure you get a recorder that will take large reels if you plan to make long recordings. For most home or amateur uses a seven-in. reel is the most convenient. Professional machines will take 10 -inchers.
Tape Speed more than anything else determines how much it will cost you to use your

TABLE B Recorder Features to Check With the Salesman

ELECTRONIC
SPECIFICATIONS

1. Frequency response
2. Tape speed equalization
3. Level indicator
4. Inputs
5. Heads and amplifiers
6. Speaker system
7. Tone controls
8. Extras

MECHANICAL
SPECIFICATIONS

1. Wow and flutter
2. Number of motors
3. Tape speeds
4. Fast forward and reversa
5. Positive motor action
6. Foolproof controls
7. Weight for portables

This is GOOD

$80.8,000 \mathrm{cps} \pm 3 \mathrm{db}$
At higher tape speed only
Neon bulbs
Microphone and radio
Two heads and single amplifier

I good 6" speaker plus ext. speaker jack
Treble only
0.3% of $71 / 2$ ips
One or two
$71 / 2$ ips, $34 / 4 \mathrm{ps}$
Should have both
Mechanical ibraking
Record interlock
Less than 30 lbs.

This is BETTER
$70.10,000 \mathrm{cps} \pm 3 \mathrm{db}$
At higher and lower speeds
Magic eye or V.U. meter
Microphone and radio with mixing
Three heads and separate amplifiers for record and play. back
8 or $10^{\prime \prime}$ speaker, multiple speakers, plus ext, speaker jack
Bass and treble
Provision to use as a P.A. system. Remote control provision. Built-in radio

Less than 0.2\%
Three, or synchronous capstan drive motor
$15,7 / 2$ and $33 / 4 \mathrm{ips}$
Should have both but fast
Won't spill or break tape when switched fast
Record interlock
Less than 25 lbs.
recorder. The faster the tape is used, the more you will spend unless you re-use your tapes. Table A lists the recording time for a seven-inch ($1200-\mathrm{ft}$. reel) of tape on a full- and half-track machine:
Tape speed is also important for fidelity. Table A shows that you get more playing time for your money by using slower tape speeds. But at slower speeds fidelity suffers.

Recorders operating at $33 / 4$ ips (inches per second) are usually adequate to cover the principal frequencies of the human voice. Hi fi aficionados will want to record at higher speeds ($71 / 2 \mathrm{ips}$ and 15 ips) since recordings at these speeds will reproduce the tonal qualities of such instruments as violins, French horns, and pipe organs more faithfully.

Controls. There are two basic types of controls, mechanical and electrical. The elec-

This information was developed from the manufacturers' literature and trade sources. (SCIENCE AND MECHANICS does not undertake to guarantee accuracy.)

ELECTRONIC FEATURES(*)

Manufacturer and Model	Price	${ }^{-}$Frequency Response at 71/2 ips	- Tape Speed Equalization	-Recording Lovel indicator	*Inputs	*Heads and Amplifier	-Speaker System
Knight 96RZ940 Allied Radio Corp. 100 N. Western Ave. Chicago 80, 1 tl .	\$84.50	$\begin{aligned} & 66-8,000 \\ & \pm 3 \mathrm{db} \end{aligned}$	71/2 only	Neon lamp	Mike Radio-phono	i head 1 amplifier	8x7
Pentron RWN The Pentron Corp. 77 S. Tripp Ave. Chicago 24, 11.	\$139.60	50-8,000	71/2 only	Neon lamp	Mike Radio-phono	2 heads 1 amplifier	$4 \times 6{ }^{\circ}$
Bell RT88 Bel Sound Syatems Columbus 7, Ohio	\$139.95	50-10,000	$71 / 2$ and $33 / 4$	Neon lamp	Mike Radio-phono	1 head 1 amplifier	$6 \times 9^{*}$
Mitchell 2525 Esco Electronics, Inc. 901 West Huron Chicago, III:	\$139.85	65-10,000	71/2 only	Neon lamp	Mike Radio-phono	1 head 1 amplifier	Two 4* spaker:
Ampro 745 Ampro Corp. 2835 N. Western Ave. Chicago 18, III.	\$189.60	60-11,000	71/2 only	Magic eye	Mike Radlo-phono	2 heads 1 amplifier	Two $5 \times 7^{\circ}$ woofers $3^{\prime \prime}$ tweeter
Masco 500 Mark Simpeon Mfg. Co. 32-28 49th Street Long Itland City 3, N.Y.	\$168.60	$\begin{aligned} & 60-12,000 \\ & =3 \mathrm{db} \end{aligned}$	712 oply	2 neon lamps	Mike Radlo-phone	1 head 1 ampllfier	6×7
VM 710 VM Corp. Benton Harbor, Michlogn	\$189.00	$\begin{aligned} & 40-14,000 \\ & =6 \mathrm{db} \end{aligned}$	71/2 only	2 neon lamps	Mlke Radio-phono	2 heads 1 amplifie	6x9" woofer 47 iweeter
Webster Electric W240 (Ekotape) Webster-Electric Co. Racine, Wisconsin	\$189.60	60-7,000	7/2 only	Neon lamp	Mike Radio-phono	1 head 1 amplifor	6
Wilcox-Gay 651 Wilcox-Gay Corp. Charlotte. Michigan	\$189.95	$\begin{aligned} & 65-10,000 \\ & =3 \mathrm{db} \end{aligned}$	71/2 only	2 neon lamps	Mike Radio-phono	1 head 1 amplifter	$\begin{aligned} & 8 \times 9^{\prime \prime} \\ & 4^{\circ} \end{aligned}$ $3^{\prime \prime}$ tweeter
RCA TTR3 RCA Victor Div. Camden, Now Jersey	\$199.98	60-8,000	71/2 only	2 neon lamps	Mike Radio-phono	1-head 1 ampilfier	$\begin{aligned} & \text { 61/2" } \\ & \text { two } 31 / 2^{\circ} \end{aligned}$
Webcor 2711 Webster-Chicago Corp. 5810 Bloomingdale Ave. Chicago 39, III.	\$199.96	$\begin{aligned} & 80-10,000 \\ & \pm 3 \mathrm{db} \end{aligned}$	7K and 3多4	Magic eyo	Mike Radlo-phone	2 heads 1 amplifier	6
Revere T700D Revere Camera Co. 230 East 21at St. Chicago 18, lil.	\$225.00	$\begin{aligned} & 40-14,000 \\ & =3 \mathrm{db} \end{aligned}$	71/2 and 3\%	2 neon lamps	Mike Radio-phono	1 head 1 ampllifer	$6 \times 0^{\circ}$
Bell \& Howell 300M 7100 McCormick Road Chicago 45, Iif.	\$299.95	$\begin{aligned} & 60-15,000 \\ & \pm 2 \mathrm{db} \end{aligned}$	7\%/2 only,	2 neon lamps	Mike Radio-phono	$\begin{aligned} & 2 \text { heada } \\ & 1 \text { amplifier } \end{aligned}$	Two 8^{\prime} woofert Two electrostatic twoeter:
Dukane 11A200 DuKane Corp. St. Charles, III.	\$385.00	$\begin{aligned} & 80-10,000 \\ & \pm 112 \mathrm{db} \end{aligned}$	$71 / 2 \text { and }$ $31 / 4$	Magic eye	2 mikes Radio-phono	2 heads 1 amplifier	$6 \times 0^{\circ}$
Ampex 801 with 620 Ampax Electric Corp. 934 Charter St. Redwood City, Calif.	\$714.60	$\begin{aligned} & 40-15,000 \\ & =4 \mathrm{db} \end{aligned}$	71/2 only	V.U. meter	Mike: Hine	3 heads 2 ampllifers	8^{\prime} speaker, acoustic encloture

MECHANICAL FEATURES(**)

${ }^{*}$ Tone Controle	Walts Output	*Wow and Flutter at $71 / 2 \mathrm{lps}$	**Number of Motor:	${ }^{*}$ TapeSpeed In lp	**Fast Wind and Rewind	${ }^{*}$ Positive Tape Braking	- Foolproof Controls	**Carrying Weight	Other Features
Trebly loes		0.5\%	one	$71 / 2$ 34	yes	$\begin{aligned} & \text { yes } \\ & \text { (mechanical) } \end{aligned}$	$\begin{aligned} & \text { yeu } \\ & \text { (keyboard) } \end{aligned}$	24 lbs.	
Treble loss	4 watts	0. 5c\% (flutter	one	$71 / 2$ $31 / 4$	yes	$\begin{aligned} & \text { yes } \\ & \text { (mechanical) } \end{aligned}$	yes (gearahift)	23 lbs .	P.A.
Treble loss	31/2 watts		three	$71 / 2$ $31 / 4$	yes	yes (electrical)	yes (keyboard)	27 lbs.	P.A.
Trable loss	2 watts	0.3\%	one	$71 / 2$ $31 / 4$	yes	$\begin{aligned} & \text { yes } \\ & \text { (mechanical) } \end{aligned}$	yes (rotary switch)	221/2 lba	Tape storage space
Treble loss	8 watts	0.5\%	One	$\begin{aligned} & 71 / 2 \\ & 33 / 4 \end{aligned}$	yes	yes (mechanical)	yes (switch)	25 lbs	Editing conveniences
Treble los:	5 watts	0.3\%	On¢	$71 / 2$ $34 / 8$	yes	yes (mechanlcal)	yes (gear shift)	23 lbs.	P.A. Monitoring facility
Feedback Troble and bass boost	8 watts	0.8\%	one	$71 / 2$ $31 / 4$	yes	$\begin{aligned} & \text { yes } \\ & \text { (mechanical) } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { (keyboard) } \end{aligned}$	30 lbs.	Tape timer, Auto shut-off, Patch cord, Pause control
Trebis lose	21/2 watts	0.3\%	ons	$71 / 2$ 3%	yes	(mechanical)	y ys (rotary switches)	29 lbs.	P.A.
Treble lose	7 watts	0.35\%	One	$71 / 2$ $31 / 4$	y*	yos (mechanical)	yes (keyboard)	35 lbs.	Tape Index, Can mix mike and radio, P. A., Remote control
Trable loss plus music/ vocal switch	2/3 watts	0.3\%	one	$71 / 2$ $31 / 4$	yes	yes (mechanical)	yes (pugh-button)	38 lbs	Remote control, Odome ter, Patch cord
Trobie loss	8 watte (peak)	0.4\%	two (4 coil)	$71 / 2$ $31 / 4$	yes	yes (mechanical)	yet (rotary switch)	45 Jbe .	Autored reverse, P.A., Reel turn counter, Auto shut-off
Treble and bass	B1/2 watts	0.3\%	one	$71 / 2$ $31 / 4$	yes	$\begin{aligned} & \text { yes } \\ & \text { (mechanical) } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { (keyboard) } \end{aligned}$	30 ibs.	P.A., Odometer, Remote control provision
Trable losa	10 watts	0.2\%	three	$71 / 2$ 3%	yes	Yes (electrical)	(push button)	42 lbs.	Drop-in lape threading, P. A. Odometer, Auto tape shut-off
Trable loss	71/2 watt	0.3\%	one	$71 / 2$ $31 / 4$	yes	yes (mechanical)	yos (push buttons and switch)	45 lbs.	P.A., Odometer, Tape solicer
Bass/treble on amplifier	10 watts	0.25\%	one.	71/2 only, others on order	yes	yes (mechanical)	yes (two switches)	56 lbs . In two cases	P.A., Two channel mixor, Drop-In tapothreading

TABLE C

Check for These Tape Recorder Features When Shopping (listed in order of importance).

ELECTRONIC

Frequency Response. The highest and lowest sound frequencies that can be recorded and played back; also includes the $d b$ variation within this range.

Equalization for Different Tape Speeds. An adjustment which makes the recorder give its best performance at each tape speed.
3.

Leval Indicator. This may be one or two neon bulbs, a magic eye, or volume indicating meter.
Inputs. There should be at least two. One for microphone, one for radio. On better machines there are provisions that permit mixing the two and simultaneous recording of both.

Separate Heads And Amplifiers. Lower-priced machines use a single amplifier switching fromitrecord to playback. More expensive machines use separate amplifiers for each. This usually permits better equalization. Less expensive machines usually use the same head for recording and playback. More expensive machines use a separate head for each (each head can be designed for best per. formance).
b.

Speaker System. All recorders should provide a jack to permit a use of an external high fidelity speaker. High fidelity (particularly bass) is difficult to obtain with a small tape recorder cabinet. One good speaker is enough, the larger the better. Multiple speakers-as used in tape recorders-usually do not aid fidelity; they may help disperse sound more uniformly.
Tone Controls. Required on playback only. Separate bass and treble controls are helpful. Better machine will have bass and treble boost as well as bass and treble droop.

MECHANICAL

1.

Wow And Flutter. Listening for wow and flutter is a way of telling how good the motor and bearings are. If they're poorly made and aligned, recordings of sustained tones (voice, organ, or piano) will have an extraneous tremolo.

2.

 Number Of Motors. Two or three are preferable. One or two well-made motors give improved wow and flutter performance over three poorly-made motors.1 Tape Speeds Available. A home machine should be able to play back and record at least $71 / 2 \mathrm{ips}$ and $31 / 4 \mathrm{ips}$. A professional machine should be able to run at 15 ips and $71 / 2$ ips af least. Most pre-recorded tapes on the market are recorded of $71 / 2$ lps, with some at $33 / 4 \mathrm{ips}$.

4 Fast Forward And Fast Rewind. These controls save considerable time when changing reels and locating sections within a reel.
5 Posifive Switching Operation. When switching between forward and fast forward, forward and rewind, etc., no setting of the function switching should permit the tape to spill or to break.

R Ease of Switching. Switching controls should be grouped in one section of the recorder. Push button or piano-key switching is most desirable. All recorders should have some type of interlock to permit recording only when an extra switch is thrown. This prevents most erasing of topes accidentally.

7 Weight And Portability. Twenty to 30 lbs. is a good portable weight for the average home type recorder. If you want to do a great deal of interviewing, a smaller machine would be better. There is some sacrifice of fidelity in the very-smallest machines under 10 lbs.

Extras. Inputs for public address systems, remote control switches, mikes, etc., are hel pful.
trical types actuate a solenoid; the mechanical types work by pressure. Electrical controls are more expensive, but are easier to adjust. On a very light portable model, mechanical controls would be most practical since their components weigh less.
Piano-style keys, knobs, levers, and push-buttons operate the various makes. Some recording specialists prefer either the piano keys or pushbuttons.

Controls to look for are record/playback; volume; fast forward/fast reverse; and record-level indicator. One necessary control is an interlock to prevent accidental erasure. On a well-designed recorder an interlock's actuating handle will be so distinctively designed that it cannot be mistaken for any other control.
Weight. Many of the portables used in homes, schools, and charches weigh from 15 to 30 lbs . and are no larger than a typewriter. If you're going to use it for field work, carrying it from place to place frequently, better buy one of the lightweights that weigh 25 lbs . or less.

Remember though, to some degree, there is a correlation between weight of the recorder and quality of recordings. Weight in the right places reduces distortion from waver and uneven speed.

Style and Finish. Keep in mind that while at-
tractive furniture-style cabinets make recorders handsome additions to your furnishings, they up purchase price a good deal. With a luggage-type portable case you can tape and play back just as fine recordings, as you can with a walnut-cabinet model.

ELECTRONIC FEATURES

Overall Frequency Response refers to the frequency of sound waves a recorder can record and play back. It is expressed in cycles-persecond (cps). You can only make good recordings within the overall frequency response limits of your machine.
The average adult male's voice has a 100 -to$5,000 \mathrm{cps}$ range. The human ear, roughly speaking, can hear sounds from 20 to $18,000 \mathrm{cps}$. Many persons, however, cannot hear this well.

Manufacturer's specifications give the low and the high frequency limits of their recorders. In general, low-priced recorders suitable for taping such material as music, bird calls, and sourd effects have overall frequency response ranges of about 80 to $8,000 \mathrm{cps}$. Higher-priced machines for the same material will bracket 30 to 15,000 cps. For recording speech, a range of 150 to 4000 cps is adequate.
Frequency Response Deviation refers to a ratio

Carried in a shoulder-holster, this three lb. Midgetape, manufactured by Mohawk Business Machines Corp., is used by law enforcement agencies, salosmen and many others. Amplitier Corporation of America has an $113 / 4 \mathrm{lb}$. recorder which is built into a briet case and is widely used by salemmen.
of loudness which is pegged in terms of the loudness of individual sound tones. A mathematical term known as a decibel (db) stands for the ratio between a common point of loudness or reference volume level (usually at 400 or 1000 cps) and the volume level at another frequency. The faithfulness with which a recorder picks up and records every sound within its frequency response range at the same relative degree of loudness as the original sound determines the closeness of the finished recording to the real thing. That is, a recorder should, ideally, give a "flat" response over its entire frequency range. But this ideal is found only in the most expensive commercial equipment; most equipment will deviate to some extent.

So you will want to remember two things when considering the sound fidelity of a tape recorder: first, the highest and lowest frequencies it will reproduce, and second, how flat its response is between these frequency limits. If audio signals of exactly the same amplitude were fed into the recorder at each in-between frequency, would they be recorded at the same volume? If not, how much would they be above and below an arbitrary reference point?
A perfectly flat system would have no difference, that is, it would have a ratio of 0 db . A tape recorder, with specifications such as 30 cps to $13,000 \mathrm{cps}, \pm 1 \mathrm{db}$ at 15 ips , for instance, would be a very fine unit.
Machines with larger deviations, however, are satisfactory for much work: A machine with an overall frequency response of 40 cps to 10,000
cps $\pm 2 \mathrm{db}$ at $71 / 2 \mathrm{ips}$ would still make excellent recordings of well played music; 50 cps to 7,000 cps $\pm 4 \mathrm{db}$ at $33 / 4 \mathrm{ips}-$ recordings acceptable for many listeners; 80 cps to $5,000 \mathrm{cps} \pm 5 \mathrm{db}$ at $17 / 8$ ips-many listeners would: 1) object to the wide variations in intensity in normal speech; 2) notice the slight differences of intensity between differently pitched passages in music; and 3) find the sound generally irritating.
Dynamic Range is a highly important tape recorder feature for it limits how low a sound and how high a sound can be recorded. If the recording amplifiers have considerable hum and noise in them they will mask over low sounds. A recorder which has a poor dynamic range will not be able to capture the pianissimo passages in music, for example. The dynamic range, or signal to noise ratio, is usually expressed in number of dbs . The better class of home recorder will have a dynamic range of 40 db or better. Some professional recorders have dynamic ranges of better than 60 db . (Symphonic music will often have dynamic ranges of 60 to 70 db .)

Equalization Correction. The slower the tape speed, the more closely wave lengths are crowded on the tape. Sounds of higher frequencies, having the shortest wave lengths, suffer most. A good recorder circuit should build up the higher frequencies to overcome this loss of correct pitch caused by low tape speed. The process of doing this is called equalization.

When tape speed is doubled (from $33 / 4$ to $7 \frac{1}{2}$ ips for example), the loss occurs an octave higher, and the equalization should be changed to build up the new high limit.
Recording-Level Indicotor. A distortion level of less than three percent is hard to detect. Many table model radios have distortion as high as 10 percent. Recording at too high a volume level: 1) makes it difficult to erase the tape; 2) introduces distortion; 3) magnetizes the recording head; and 4) reduces the natural dynamic volume range. For all of these reasons you'lh want a good recording-level meter on the tape recorder you buy.
A single neon or a magic-eye bulb is the simplest effective type of level indicator. A set of dual bulbs (one that flickers continuously and another that flickers when the level is too high) is more satisfactory than the single bulb. A magic eye indicator is better than the neon bulb type. And a' volume-unit indicating meter is best.
Inputs. Some of the more professional style recorders have remote control plugs. If you expect to use your machine in theaters or in the field you may want to look for a model equipped with them. Most of the less expensive recorders will handle one microphone (high impedance) and/or one input such as radio or phonograph.
With a more versatile recorder circuit you can mix in a microphone and a phonograph at the same time on separate controls. And the more expensive recorders have inputs such as

Home use for a recorder are almont unlimited. Narration for home movien, for instance, ean be recorded (and syachronized with projector by barmarkinga on tape); or dramatic readinge, complete with sound effects, can be transcribed. Above, a fire is being simulated with cellophane held near the microphone. The sound of human footsteps in snow are made by squeezing a box of cornstarch; horsestep: on a dirt road, by manipulating two coconut half-shelle in a pan filled with sand (ior a gravel road, add small pebbles to and); thunder, by rattling sheetmetal; walking through underbrush, by twisting broomstraws: etc.
line plugs for bringing in sound from a telephone remote line, radio, phonograph, P. A. system, or other source.

Separate Recording and Playback Amplifiers. Some machines with separate record and playback heads also have separate recording and playback amplifiers. With these, the tape can be monitored or listened to as it is being recorded and you can make a continuous check on the recording process, rather than waiting until the recording is finished.

Heads and Head Alignment Adjustments. Dual heads are a compromise if you want your recorder to have maximum usefulness. Most lowerand medium-priced machines have two separate magnetic heads, one for erasing, the other for both recording and playback. For maximum utility, you may want a recorder with three separate heads, one for erasing, one for recording, and one for playback.

For highest fidelity you should choose a machine with adjustable heads so that you can align the heads with the tape. The recording or playback head must always be perpendicular to the tape's direction for good recording.

Editing Ease. On most of the non-professional tape recorders the erasing and combination re-cord-playback heads are shielded with cover plates. These covers look nice but they make editing difficult. So do reels that will not move when the tape is not in "run" position. It is best to remove the cover plates when extensive split-word editing is done.

When marking tape for editing, we prefer to move the tape manually (by turning the take-up and feed reels by hand) with the sound on. On many of the moderate-priced models this cannot be done. You have to run the machine with the motor going full speed, then control tape position by adjusting push buttons and knobs. This makes it hard to find words.
Full vs. Half Sound Tracks. The signal, or strength of magnetization, is stronger on fulltrack machines. Less area on the tape is used on half-track recordings.

All home recorders are likely to be half-track. On these machines about half the tape width is used to record in one direction, the other half in the opposite direction. That's how you get twice the recording time on a reel of tape on a half-track machine as you do on a fulletrack recorder. And that's why you spend less for tape with a half-track outfit. But when you cut portions out while editing the track on one half of a tape, you're also cutting out some of the programs on the other half.
Speakers. Low- and medium-priced tape recorders generally have built-in speakers; this is a good feature for portable machines. You should have at least one good six- to eight-in, speaker; a bigger one is better yet.
Most of the better recording units have a jack for plugging in a larger external speaker or for feeding a hi-fi amplifier.

Tone Controls. On most recorders these controls for decreasing or boosting the intensity of the low, middle and/or high tones operate only during playback. On a few they function during both recording and playback.
A single tone control usually does only one thing-eliminates the high frequencies. This makes a muffled reproduction. If a machine has both treble and bass boost and droop controls, you can usually add bass tones and retain the highs, or reduce the bass without producing shrill high frequencies.

Public Address Operation. Any recorder which has switching controls for connecting the microphone directly through the amplifier to the speaker can be used as a public address system.
Bafterles. Most portable, battery operated machines require a " B " battery and several flashlight type dry cells for filament and motor operation. Other portable machines use a rechargeable wet battery. Spring-wound models for recording in remote areas are available.

Wherever you want to record, keep in mind what kind of material you're going to want to get. If it's to be Junior at home reciting Tennyson, the church choir live or symphony concerts off the radio, then $\$ 100$ to $\$ 200$ should get what you want.

If you want to concentrate on voice tapes at work or at school you can buy recorders for $\$ 90$ to $\$ 160$. But if you're most interested in taping music and doing the job with excellent fidelity, then you'd better be prepared to spend $\$ 300$ to $\$ 350$ or more.

B-Battery Eliminator for Portable Radios

PERSONAL portable battery-operated sets are very convenient gadgets when they, are working. Usually when these sets conk out, it's because the A or B batteries have gone dead. Many of today's compact portables use easily-obtained ordinary flashlight cells for A-power. However, the B battery is a specialty item many appliance stores may have to order for you.
When used indoors, it is foolish to waste expensive packaged power when the portable, even if it is not designed for power line operation, can be made to operate off the 115-125 volt ac-dc power line, thus saving the B battery for use only when the set is outdoors. This safe, compact B Battery Eliminator (Figs. 3, 4 and 5) costs less to build than the battery it replaces which retails for about $\$ 2.50$ plus local taxes. You can change over from battery to eliminator use, incidentally, in just about one minute's time!
When your radio is operated with this battery eliminator, you'll notice, first of all, a great improvement in tone quality. That's because most small portables are limited to $671 / 2$ volts plate supply, but this eliminator delivers 90 volts $d c$ from the power line. Most portable sets are actually designed for best operation at 90 volts, but battery space limits operation to $671 / 2$.

Ordinarily, a portable radio operates without benefit of a ground. However, when operated with the eliminator, a ground is automatically established through the power line. Reversing the line cord plug in the outlef will show you which position does the best job of stepping up the volume and range of the receiver.

Look Ma, no B-battery! Eliminator shown in Fig. 3 saves on costly B-batteries.

Because the size and shape of B batteries vary, we chose a set employing a minimum of space for the B battery. The reader can always use a larger plastic box to contain the eliminator if his set is not as crowded as our receiver. To house the eliminator, we secured a re-use type, hinged, $1 \times 13 / 4 \times 43 / 8 \mathrm{in}$. plastic box (originally containing a boy's bow tie). The eliminator itself was 1 in. shorter than the B battery it replaced.
You'll need just five electronic components to make the eliminator: a half-wave selenium rectifier, two electrolytic capacitors and two resistors. Mount these on a strip of $1 / 18 \times 15 / 18 \times 37 / 8 \mathrm{in}$. Bakelite. Lay out the Bake lite as shown in Fig. 2, drill-

```
MATERIALS LIST-B.BATTERY ELIMINATOR
    hinged plastic box (see text)
    ft. line cord and plug
Dc 1/14" Bakelite or fiber; 37/8 \times 15/13"
2 20 mf., 150 w.v. electrolytic capacitors (Cornell- Oubilier \#8r-2015)
40 or 50 MA selenium rectifier (Radio Receptor \#851 or Sarkes-Tarzian \#50)
3300 ohm. 1-watt IRf type BTA. 1 resistor 33 ohm, 1-watt IRC type BTA. 1 resistor
Dr United-Carr battery snad connectors
3/48 fh machine screws and nuts
```


PANEL LAYOUT
MADE FROM $\frac{1^{\prime \prime}}{16}$ BAKELITE 2 HOLES: $A=\frac{3^{\prime \prime}}{32}$
ALL OTHERS $-\frac{1^{\prime \prime}}{16}$
ing or punching the mounting holes as indicated. With the strip completed, place it inside the plastic box and mark, on the plastic, the locations of the two holes marked " A ". Drill $3 / 32$ holes at these points through the plastic, and countersink them on the underside with a $7 / 32$ twist drill.

Next, file a groove or slot in one end with a 3-cornered file, $3 / 11$ wide. In the opposite end of the hox, file two grooves with a $1 / 8$ dia. rat-tail file. These filed slots accommodate the line cord and the B minus and B plus leads.

Because of the limited space available, we used a novel method of obtaining tie point lugs for solderingin components. The two

How Eliminator fits space ocicupled by B-battery with a full inch to spare. To prevent shorting, apply strip of adhesive tape over exposed connector buttons. (A) shows closeup view of oliminator in its plastic box. Slots filed in case provide clearance for line and leads. (B) shows bottom view of eliminator. Pigtail ledds of capacitors form direct wiring and tie point lugs. Two ih screws secure the components rigidly inside the plastic box.

ored the reverse of the actual polarity required. Thus, black or yellow lead will be plus, and red lead minus. Snaps are wired as in Fig. 4. regardless of lead color.
With wiring completed, place Bakelite strip in plastic box, install a 3-48 flathead machine screw, $3 / 4$ or 1 in . long, up through the selenium rectifier and secure with a nut. Insert and secure another $3-48$ screw, about $1 / 4 \mathrm{in}$. long, in the remaining hole. Finally, slip the fixture cord and B-leads into their respective grooves and shut the box cover.

Attach the B-lead snaps to their mates in the set. Apply a strip of adhesive tape over the snap heads to eliminate any possibility of a short circuit. Do not plug-in the B-Battery Eliminator until snaps have been connected (you might get a shock).
File a not-too-deep groove in the side of the radio cabinet cover (Fig. 3) to clear the line cord. Cover will help grip wire when it has been closed.
Why didn't we design this unit iso as to also furnish A power? First, the flashlight batteries which furnish A power are cheap and readily available. Secondly, it would be necessary to rewire most sets from a parallel to series filament string and add circuit filters. In addition, a voltage dropping resistor generating a great deal of heat would be involved. Finally, the extra components would require too much space.
This little B-battery eliminating power supply in its present form uses very little power, and does not generate heat. It should be disconnected from the power line when the set volume control is turned off. The builder can, however, insert a feed-through Bakelite switch (25% in dime stores) in the line cord.-T. A. Blanchard.

Decade resistance box in use in radio servicing job. Various values of resistance are being applied across terminals where a defective resistor was formerly soldered, and which is now unidentifiable due to extreme heating.

Ten ohms to ten megohms instantly available for test or experimental work with this handy, portable unit

PROVIDING 51 different standard 1-watt resistors for instant circuit insertion by means of three 17 -point rotary switches and plug-in leads, this decade resistance box is ideal for substitution use in the case of defective or suspect resistors in existing circuits, or as a test selection of values for new circuits. Its application in radio and television service work is obvious, and for experimental work-especially with transistor circuits where the amount of resistance used is often critical-its use is almost a necessity.

The 51 resistors in the unit described in this article range from 10 to 470 ohms, 560 to 12,000 ohms, and from $15,000 \mathrm{ohms}$ to 10 megohms; all of 10% tolerance. Resistors of other values can be used to make up a different set of ranges if desired, and 5% or 1% tolerance resistors can be used where greater accuracy is demanded (and cost is no concern), but the values indicated here will usually be found to encompass all those needed for ordinary servicing or experimenting.

The red plug-in jack on the top panel of the Bakelite case housing the unit is common; the other three jacks (A, B, C in Fig. 2) tap off from the individual switches. With the leads plugged in the common and A, you can use all the resistors in the first group (10 to 470 ohms) ; changing the second lead to the B jack, you get the second group, 560 to 12,000 ohms; to the \mathbf{C} jack, 15,000 ohms to 10 megohms.

Dial plates numbered from 1 to 17 are provided at each switch and a chart cemented to the bottom of the case identifies each resistor value. (The bottom is the only location on the case where a space large enough for the chart is
ing in the switch terminals at one end, for fitting around the bare wire circular common terminal at the other. (Ohmite or Allen Bradley 1-watt resistors should be used because of their comparatively short length. Some other makes are much longer and their use may result in a fitting problem within the case.)

Pass the looped ends of the resistors through the switch terminal holes from the back side so that the loops at the other ends will be turned out. Press them down tightly with pliers and

DECADE RESISTANCE BOX CHART					
					(C)
1	10	1	560	1	15 K
2	12	2	680	2	22K
3	15	3	820	3	33K
4	18	4	1000	4	47K
5	22	5	1200	5	68K
6	27	6	1500	6	100K
7	33	7	1800	7	150 K
8	47	8	2200	8	220K
9	56	9	2700	9	330 K
10	68	10	3300	10	470K
11	82	11	3900	11	680 K
12	100	12	4700	12	- 1.0 m
13	150	13	. 5600	13	$1.5 \mathrm{M}$
14	220	14	6800	14	2.2M
15	270	15	8200	15	3.3 M
16	330	16	10K	16	4.7 M
17	470	17	12K	17	$\bigcirc 10 \mathrm{~m}$
$K=1000$ ohms $\quad M=$ megohms					

solder (Fig. 3B). As shown in Fig. 2, the \#1 terminal is at the right side of the wide spacing on the switch contacts.

The lowest value resistor for each group of resistors goes to the \#1 terminal, values advance counter-clockwise (as viewed from the back). Measure each resistor with a reliable
dered to the switches, pan (1)) prepare the Bakelite top panel (Fig. 4)). This piece of black Bakelite can be a part of an old $1 / 8-\mathrm{in}$. radio panel or you can send to Forest Products Co., 131 Portland Street, Cambridge, Mass, which will supply one cut approximately to size for $\$ 1.15$ post-paid (send money order or check). Corner holes are

Shape resistor leads around two nails driven in a block of wood to get them of uniform length and with unliorm loops (A); then, starting with terminal \#l on each switch with the lowest value resistor, position looped ends of resistors and solder at each terminal (B).

With the resistorequipped switches attached to the panel, attach formed rings of bare copper wire to free loops, bending them down unliormly over the ring (C); and after the three rings have bean placed and feade connected as shown, solder all points of coptact to the rings.

DECADE RESISTANCE BOX-MATERIALS LIST
1 Bakelite case $21 / 4 \times 51 / 4 \times 63 / 4$ (MS 218)
4' \#18 test lead wire
3 17-position switches (Mallory 31117J)
2 banana plugs (MS 209-black)
3 dial plates (Mallory \#467, marked 1-17)
2 insulated alligator test clips (black)
3 binding posts (Superior DF30BC-blach)
1 binding post (Superior DF30RC-red)
1-watt carbon resistor, 10% tolerance, Ohmite or Allen Bradley-
One of each of the following

10 ohms	560 ohms	15,000 ohms
12 ohms	680 ohms	22,000 ohms
15 ohms	820 ohms	33,000 ohms
18 ohms	1000 ohms	47,000 ohms
22 ohms	1200 ohms	68,000 ohms
27 ohms	1500 ohms	100,000 ohms
33 ohms	1800 ohms	150,000 ohms
47 ohms	12200 ohms	220,000 ohms
56 ohms	2700 ohms	330,000 ohms
68 ohms	3300 ohms	470,000 ohms
82 ohms	3900 ohms	680,000 ohms
100 ohms	4700 ohms	1.0 megohm
150 ohms	5600 ohms	1.5 megohms
220 ohms	6800 ohms	2.2 menohms
270 ohms	8200 ohms	3.3 megohms
330 ohms	10,000 ohms	4.7 megohms
470 ohms	12,000 ohms	10 meoohm

All of the above material can be obtained from Lafayette Radio, 165.08 Liberty Avenue, Jamaica 33, N. Y. or in New England from thelr branch at 110 Federal Street, Boston, Mass.
1 piece Bakelfte $1 / 8 \times 5 \times 61 / 2^{\prime \prime}$
2^{\prime} of \#16 plastic Insulated stranded hook-up wire; $15^{\prime \prime}$ of bare \#14 copper wire; four $4-40 \mathrm{ma}$ chine screws $3 / 8^{\prime \prime}$ long, binder head plated screws preferred

for 4-40 machine screws; the four Superior combination binding posts require $1 / 2-\mathrm{in}$. dia. holes; the switches, $3 / 8-\mathrm{in}$. dia. holes. Holes should be made with a twist drill ground as shown in Fig. 4B; regular ground twist drills have a tendency to tear such Bakelite.
Switches come equipped with a round plate having a pin that may be used as a stop. Since all 17 switch contacts are needed for this unit, discard this stop. Cut off the shaft at the first

Back of the completely wired unit is shown in A. Use \#16 insulated wire from the binding posts and also between the ring ferminals.
marked point and install, using a washer on each side of the panel, applying cement (such as coil dope) to the lower washer to keep the switch from turning and to keep the dial plate, top washer and nut clamp assembly tight. Then install knobs.

The next step is fitting wire rings to the looped ends of the resistor leads and bending them over tightly with pliers (Fig. 3C). Form the rings from bare copper wire (about \#14

Attach the completed panel to the Bakelite meter case, using 4.40 screws at the four corner holes (B). It tits tlush in recess of case.

Completed job shows the lettering that was put on with decals sold for the purpose. After decals have thoroughly dried, apply a thin coat of clear plastic with a small brush to make them permanent. Banana plugs and clips soldered to short flexlble leads make connections quick and easy.
gage), leaving open ends at the wide-spaced switch contacts. Then connect flexible insulated leads from ring to ring to join them as a common terminal for all resistors and run a lead from one
of the rings to the red binding post. Use \#16 wire (negligible resistance itself) for these connections (see Fig. 3D). Finally, run a length of \#16 wire from each black binding post to the arm contact of the switch it is controlled by (see Fig. 5A).

Banana plugs and alligator clips soldered to short lengths of rubber-insulated, extra-flexible, \#18 test lead wire make convenient connections between the binding post jacks and the points on the circuit under test. Switches are marked A, B and C, and the binding posts to which each switch is connected are similarly marked for quick identification. You can do this with a fine brush and white paint or use decals as supplied by electronic stores for such work.

The decade resistance box can also be used with the leads plugged into either A and B jacks or B and C, putting the banks of resistors in the two groups used in series for special test cases. Where standard RETMA values only are of interest, however, the leads are used with one in the common and the other shifted to either A, B or C post jack.

By ARTHUR TRAUFFER

Here, fastened to $\alpha 1 / 2 \times 3 \times 9$ in. wood base, is a simple code-practice set. The key is at the right, the buzzer is in the center, the "C" battery is on the left. Inset shows schematic representation of same apparatus.

11 A

MEET the Buzzer, an electromagnetic vibrator used for signaling purposes. Figure 1B gives a typical schematic for a single-coil buzzer. Figure 2 shows the physical make-up of a single-coil, low voltage, high-frequency buzzer. Note in Fig. 2 that the point on the buzzer's vibrator and the point on the left-hand battery terminal touch, thus closing the circuit through the coil (see Fig. 1B). When a source of voltage is connected across the terminals, current will flow through the coil, setting upia strong magnetic field in the pole piece which then pulls the vibrator toward it, thus separating the points. When the points separate, current flow is interrupted, the vibrator returns to its original position, the points again close, and current again begins to flow through the coil and the cycle is repeated. That, in essence, is how

[^2]

Above, A code-practlce key for the beginner (Johnson Speed.X Model 114-300). Knob has been converted to Navy type by drilling hole in plastic poker chlp and fastening it between standard knob and lever. Navy type knob serves as finger rest and reduces fatigue when key is used for long period of time. Below, With this set-up, you can practice code to your heart's content without disturbing other members of the family. The buzzer is mufled by werapping it in cotion and sealing it in a half.pint Mason Jar. You hear the buzzer in the phones.

a buzzer is made to operate.
The side-to-side movement of the vibrator is so rapid that it gives forth a high-pitched whine. The frequency of this tone, of course, depends upon the number of times the vibrator moves per second. Note in Fig. 2 that there are two adjustment screws, one for the vibrator and one for the points. When these screws are properly adjusted, the buzzer will give a clear highpitched tone, free from sputtering and raspiness.
A Radio and Telegraph Key is simply a handoperated switch used to interrupt the flow of current in a radio or telegraph transmitter and thus send a message from one location to another (either through the air or along wires). The message is transmitted by means of the radio and telegraph codes.
The three types of keys most commonly used are: 1) a vertically operated lever, (Fig. 3) on which the dots and dashes of a code are formed by downward thrusts; 2) a semi-automatic, side-to-side operated key (called a "bug") on which dashes are formed by pressing the lever to one side, while the dots are automatically formed by a weight vibrating on a spring when the lever is
pressed to the other side; 3) a double-action key (called a "side-swiper"), which is similar physically to the vertically operated lever except that it has a blade that moves from side-to-side to form dots and dashes. The double-action key is similar to the semi-automatic key in operation except that its double-action is much simpler and does not form the dots automatically.
A key, a buzzer and a source of voltage connected as in Fig. 1 will give you a simple and compact code-practice set. In Fig. 1, the base is a $1 / 2 \times 3 \times 9 \mathrm{in}$. piece of wood. The buzzer and key are mounted on the base with rh wood screws, and the $41 / 2 \mathrm{v}$. " C " battery that serves as the source of voltage is taped to the base. Instead of a "C" battery you can use two \#2 flashlight cells of $11 / 2 \mathrm{v}$. each, connected in series to provide 3 v . Leads are soldered directly to the cells, and the cells are held together with adhesive tape. You can also use two \#6 dry cells ($11 / 2$ v. each, connected in series), but these are too large to mount on the base shown in Fig. 1. It's better not to use a 2.5 v . or a 6.3 v . a-c filament transformer for powering a buzzer, because of the interference caused in nearby radios and TV sets. And potentials higher than $41 / 2 v$. are not recommended for code-practice buzzers, either, because with them you may have excessive sparking and pitting of the points.

Wire your code practice set with bell wire obtained at the dime store. It isn't necessary to drill holes through the wood base to reach the terminals in the buzzer; simply file notches in its bottom rim and pass the wires through the notches. When mounting the buzzer and key on the wood base, do not draw-up the screws too tightly or you may crack their Bakelite bases.
With a Qulet Code-Practice Set, you can practice the code all you want, any time you want, without disturbing other members of the family. To make a quiet set, put the buzzer in the center of a ball of cotton and seal it in a half-pint Mason
jar (Figs. 4 and 5): This will muffle the buzzer's sound, but when you wire in a pair of phones, you'll hear the buzzer in them. Soft, flexible, insulated wire leads should be used to connect the buzzer to the four bindidg posts on the plastic or Bakelite disc. Stiff wires will permit mechanical vibrations from the buzzer to travel up them and use the plastic disc as a sounding board. The center screw on the bottom of the buzzer holds the bracket to which the vibrator is fastened, so you can make one of your phone terminal connections to it (Fig. 4).

Be sure to place the buzzer in the center of the ball of cotton, because if it should touch one side of the jar, mechanical vibrations will use the jar as a sounding board. And don't pack the cotton too tight or vibrations will pass through the cotton and use the jar as a sounding board. If some do, in spite of precautions, stand the jar on a rubber pad or some other soft material.

If volume in the earphones is too high, you can reduce it by connecting a .001 mfd . capacitor in series with one of the phone leads. The value of the condenser will determine the strength of the signal in the phones, so if with a .001 mfd capacitor you still get too loud a signal, use 500 mmfd. or 250 mmfd . instead. Once the value of the capacitor has been determined, connect it in place of the jumper between the disc's battery and phone terminals as shown in Fig. 4.
Incidentally, the FM fan who has a set without a tuning indicator can use a buzzer muffled in a jar

This buzzer "amplifier" is ideal for use wherever a large number of persons assemble to learn the code. No vacuum tubes are used, yet speaker volume is more than onough to till a large hall.
of cotton as a tuning aid. Tape two \#2 flashlight cells to the jar containing the buzzer, fasten one lead from this battery securely to one buzzer terminal on the plastic dise on the jar and fasten the other lead to the other terminal with an alligator clip so that you can disconnect the buzzer when desired. Now, place this unit close to an FM receiver (on top of the set is a good place) so as to cause AM interference with the FM signal being tuned in. Since the function of the FM circuit is to reject AM and to detect FM, adjust the tuning knob of the receiver for the weakest buzzer signal and you will have the FM station "right on the nose." In FM receivers, stations come in at three closely-spaced points on the dial, the center point being the loudest and the correct point. Buzzer volume will weaken at these three points, and will be weakest at the center point.
Amplifying a Buzzer. Instead of quieting the buzzer, you may want to greatly increase its volume so that dots and dashes can be clearly heard by a number of code-practice students anywhere in a room. One way to do this is to place your code-practice set close to the loop antenna on the rear of an AM radio with the buzzer near the center of the loop. The loop will pick up the R.F. energy generated by the buzzer's sparking points and the radio will detect, amplify, and reproduce this R.F. in the usual manner. To pick up the buzzer signal, tune the radio to a quiet place between two stations; volume can be controlled, of course, with the radio's volume-control.
For a code-practice buzzer "a a plifier" that will tremendously "amplify" the buzzer's signals without the use of vacuum tubes, see Figs. 6 and 7. The chassis of this unit is made up of two pieces of $7 \times 11 \mathrm{in}$. 5 -ply plywood screw-fastened together and braced with $3 \times 3 \mathrm{in}$. iron angles (Fig. 7). The front panel of the chassis is $1 / 2-\mathrm{in}$. plywood; the base, 1 -in. Buzzer and key are mounted on the base with th wood screws. Two S.P.D.T. knife switches are mounted side-by-side for volume selection. (If you have a D.P.D.T. switch on hand, you can convert it into two S.P.D.T. switches by sawing through the center of the insulated strip that joins the two blades.)
Use a 5 in . or larger PM speaker with as large a magnet as possible. The larger the speaker, the higher the volume. Cut the proper size hole into the front panel for the speaker, and mount it behind window screening for protection. Two \#6 dry cells are connected in series to provide a long-lasting, 3 -v. power source.
With the two S.P.D.T. switches, you have a choice of three different buzzer volumes. Referring to Fig. 6, for buzzer only, speaker silent: throw blade 1 to contact B; leave blade 2 open. For medium speaker volume: throw blade 1 to contact A; leave blade 2 open. This puts the speaker voice-coil in series with the battery. Speaker volume is louder than that of the buzzer alone. For loud speaker volume: throw blade 1 to contact B and blade 2 to contact C. This puts the speaker voice-coil across the buzzer's coil.

Experimenter's Test Bench

By W. F. Gephart

RADIO-TV experimental work-and servicing work-can be done most easily and efficiently where there is, adequate work space, accessible test equipment and tools, good lighting, and quickly located parts and supplies. A well-designed test bench, such as that shown in Fig. 1, meets each and every one of these requirements and makes even the tough jobs a pleasure.
The bench itself is constructed of fir plywood and can be built without power tools, although if you can borrow or rent an electric hand saw such a tool will simplify the initial cutting steps. The bench includes a number of optional features which can either be included in the original construction or added later. The work area top is replaceable tempered hardboard which, when it has withstood a maximum of abuse (and its maximum is plenty), can be readily replaced. Electrical outlets are numerous and convenient, and test equipment is located-for the most part -outside of the work area, yet is also conveniently at hand. Finally, there is adequate and convenient storage space for tools and parts.

Begin construction by cutting the $4 \times 8 \mathrm{ft}$. plywood and hardboard panels (see Materials'

List, last page of this article) as shown in Figs. 2 through 8, the lengths of $1-\mathrm{in}$. stock as shown in Fig. 9. In making these cuts, arrange a guide board as shown in Fig. 10 to insure straight cuts. Clamp the guide board to the panel being cut so that when the edge of the electric hand saw runs along it, the blade will cut along the pre-viously-marked line on the stock. In the cutting plans Figs. 2 through 7, the small black triangles indicate the side of the line along which the saw blade should run to secure the exact desired dimension, making allowance for the kerf of the saw. In cutting the $1-\mathrm{in}$. stock, use the regular rip guide with the saw. (Lines marked "xxx" and " x " on the cutting plans indicate points where the end of the cut is made with a hand saw.) In some instances, slight additional cutting will be required to fit as assembly proceeds. (These cuts can be made later with a hand saw if an electric saw is rented for initial cutting.)
After the material is cut, fasten the side-top braces, drawer slides, and shelf supports, to the sides of the cabinets. Figure 11 illustrates how an actual drawer side, plus a scrap of hardboard, is used for spacing drawer slides. The side-top brace is nailed and glued in place and the first

After the internal members are in place, assemble the cabinets by fastening tops to sides. Cut a piece $1 / 2 \times 12 \mathrm{in}$. out of each top to allow for the part of the side that projects above the top (see arrows in Fig. 15) and completely assemble both cabinets, including facings (as in Fig. 15) before assembling units as a bench.
To assemble as a bench, place both cabinet units face down on the floor, parallel to each other and 30 in . apart, with the bottoms even. Then glue and nail the backboard (Fig. 14) in place, following this with the back bottom brace. As the nailing is done, check alignment with a carpenter's square, and while the assembled unit is in this position, cut holes for the electrical outlets in the backboard. Next, raise the unit to its upright position and secure the shelf in place by screwing the shelf brackets to the backboard (27. in. in from each side), the shelf to them, finishing by nailing in from the ends and backboard. At this stage the unit will look as shown in Fig. 16.

Now assemble the drawers as shown in Fig. 17. If power equipment is available, the hardboard bottoms can be grooved into the sides, front and back for
drawer slide is then spaced as shown in Fig. 11, the strip of hardboard being a measurement of "slack," to allow the drawer to fit loosely. After the first slide is nailed and glued in place, the remaining slides are positioned in the same manner, working from top to bottom. Before the bottom slide is fastened in place, mark the bottom of it and make a cut-out for the "kick-space" at the bottom of the cabinet side.
Figures 12, 13 and 14 give overall dimensions of the two cabinets and bench assembly. (Some of the dimensions may vary slightly in actual construction, depending on fit.) In all cases, all joints and supports (drawer, shelf, etc.) are glued, using resin-type glue, as well as nailed.
support; if not, glue and nail $3 / 8-\mathrm{in}$. sq. strips along the inside bottom of the front, sides and back to support the hardboard bottom. In all cases, small $1-\mathrm{in}_{\mathrm{s}}$ metal angles should be fastened between the inside of the fronts and sides to take the strain off the nails when opening or closing the drawers.
Partitioning plans for the drawers are shown in Fig. 18. It is suggested that the top drawer be used for tools; the exact partitioning for it will depend upon your needs. The second, third and fourth drawers (A in Fig. 18) are designed for storage of small parts such as resistors, capacitors, switches, jacks, etc., and the 36 -unit partitions shown are recommended. Resistors
and capacitors are grouped in each compartment (such as 1-1000 ohms, $1000-5000$ ohms, etc.), and other parts, such as toggle switches, jacks, potentiometers, etc., each have their own compartments. One-hun-dred-and-eight compartments are available in the three drawers.
The center-to-center dimensions shown in Fig. 18 may vary slightly, depending on the exact size of the inside of the finished drawer. The exact spacing can be computed by the formulas given; the $1 / 4$-in. plywood sections are notched as shown in Fig. 18C. In assembling the partitions, the cross partitions should be on top and all partitions nailed into from the side and back of the drawers. (It is also a good idea to glue and nail them to the bottom of the drawer.)
The fifth drawer (B in Fig. 18) is for storage of transformers, relays, meters, etc. The compartments are larger, but construction principles are the same as for the other drawers.
The bottom drawer (Fig. 19) is for tube storage and has a special false bottom to hold nonminiature tubes not in cartons. Built as in Fig. 19, the drawer has maximum capacity, although some users might like more space at the front

7 of the drawer for other tubes. Figure 20 shows a view of the partitions in one of the small drawers; Fig. 21, the interior of the tube drawer, stocked with tubes.

Additional shelves (requiring additional lumber) may be placed in the right-hand cabinet but adjustable shelves using metal mountings should not be used, since the shelves provide bracing for the overall unit.
The center section is designed so that it can be removed and set at a lower level when working with a large chassis. To assemble the center section, first take one of the center section frame pieces (see Fig. 9) and using it as a guide set the top supports of the center section down
enough to make the top of the frame piece flush with the top of the cabinet (see Fig. 22). Glue and screw the supports to the sides of the cabinets, making sure that the screws do not go through the side of the left cabinet to interfere with the sliding drawers.
After the supports are in place, assemble the center section by nailing the four frame pieces together and nailing the top to them. The width of the section should be approximately 30 in ., but cut to fit the opening between the cabinets. The depth should be 30 in . if the test lead storage plan (discussed under Electrical Work, below) is not to be used, 29 in . if it is to be used.
A small barrel bolt (as shown in Fig. 22) holds

the center section in place. A second one can be mounted on the bottom support if desired.

The hardboard tops of the cabinets and that of the center section may have to be planed or sanded slightly to assure an exact fit. They are
 mounted on the bottom support if desired.

9

Piece of scrap hardboard spaces drawer slide.

Cutting guide board is clamped to panel with saw blade in place along marked cutting line.
at various front-to-back intervals. Then fasten a scrap piece of hardboard $11 / 8 \mathrm{in}$. wide to the front of the regular shelf, with $1 / 2-\mathrm{in}$. holes in it, spaced at regular intervals (between the blocks), and lay the hardboard false shelf on top of the

in standard metal boxes, using approved devices. The proper knockouts should be removed and the cable connectors installed before the boxes are mounted. Boxes should be fastened from the back, their fronts flush with the front surface of the mounting board. Wiring is straight-forward, details and the general plan are given in Fig. 24. Unless you plan to use special highcurrent devices, \#14 wire is sufficient.
The light fixture is assembled from $1 / 2$-in. pipe as shown in Figure 25. (Threads on the cable connectors are pipe threads and will screw into the $1 / 2$-in. pipe coupling.) Leaving the elbow joint at the top of the vertical pipe fairly loose, permits the light to be swung from one end of the bench to the other. Completed wiring and light fixture are shown
blocks. The exact length of the hardboard strips, and the cut-out in the center of the false shelf (for leads to the Concentrator) will depend on the size of the Concentrator panel (see below).
Electrical Work. Use flexible metal conduit (such as "BX" cable) for all wiring. In many locafities local ordinances require it; furthermore, such wiring, with the metal covering grounded, prevents the formation of stray ac fields which often cause problems in delicate testing or experimentation.
To meet local requirements, as well as the Underwriter's Code, all power outlets should be
in the rear view of the backboard in Fig. 26.

You can use either a fluorescent or an incandescent fixture, but normally, fluorescent fixtures are not recommended, since even the best of them sometimes emanate rf interference. A yard light fixture-reflector (see Fig. 27) provides a simple incandescent light.
Test Lead Concentrator. Whenever several pieces of test equipment are used, a number of different leads are required; if the equipment is spread across a shelf, long leads are sometimes needed. Thus, in many tests, when several instruments are used, the bench becomes literally

Completed cabinet assembles with faeings in place and holes cut for electrical outlets. Arrows point to offeet cuts in cabinet tops (Fig. 15). Cabinet-bench assembly belore wiring and top installation (Fig. 15).

festooned with test leads.
A Test Lead Concentrator provides a central point, at the center of the bench, where the terminals of most test equipment is available. It also provides for standard type leads for all equipment, and gives you the option of connecting all equipment to a common ground, with a single lead to the unit under test. The size and number of jacks for such a unit will depend on the equipment you have, but extra jacks should be built in to allow for growth.

The leads for the units to be used with the Concentrator connect to the test equipment at

BOTTOM ASSEMBLY DETAILS
the usual jacks or terminals (thus avoiding any alteration of the equipment), go through a hole in the shelf facing (see Fig. 23) under the false shelf, and connect to the back of the Concentrator. In most cases, all except the ground lead should be shielded wire. Figure 28 shows the relation of two units (a VOM and a VTVM) to the Concentrator. Note that the VOM leads are not shielded.

At the Concentrator itself, a wire is run across the front of the panel along the bottom and connected to a central-common ground-jack (see Fig. 28). If several test instruments are being

Top view of inside of tube drawer.

Leads for Test Lead Concentrator go ihrough hole in front strip and run between serap blocks to back of Coneonirator.

Mounting details of yard light incandescent fixture.

Rear of backboard, showing wiring and light fixture details.

Test Lead Coaceatrator with leads for VOM and VTVM connected (above).

Test leads for Comeentrator unit: shielded lead (left); fumper lead (center); regular lead (rigyt).

Backboard below shelt with leads, tools, and fused outlet installed.
ity of any fuse will be reduced by about 50 ma . While a pilot light does make it apparent when the fuse is blown, it does not permit extremely low-current fusing. If extremely low-current fusing is desired, the " X " side of the pilot light should be connected to power lead " X " rather

built with five fuses. By increasing the size of the switch and adding fuse holders, even greater selection would be available. The unit is designed to use 3AG fuses; these are available in sizes from 10 ma . to 8 amps .
If a pilot light (a handy reminder that the circuit is "on") is wired through the fuse, the capac-
than as shown in Fig. 30.
Enclose the unit in a metal box (to meet code and Underwriter requirements) as in Fig. 31.

Test Lead Storage. Figure 31 also shows a simple means of storing test leads. The center section of the bench is cut 1 in . short (29 in. instead of 30 in .), leaving a $1-\mathrm{in}$. gap at the back. You can then screw a simple wire hanger (made from coat hanger wire) to the backboard or underside of the shelf, and use this for leads terminating in a clip. Or you can notch a piece of hardboard from the front to take shield leads and mount this on the backboard.
Tool Board. While most tools are stored in the top drawer, the most commonly used ones can be kept handy on top of the bench. Figure 31 shows a simple tool board for such items, tools held in place with small spring utility clips, solder, soldering paste and hook-up wire held in place with long finishing nails. To mark the location of each tool, paint a black outline of the tool (as in case of diagonal cutters in Fig. 31) on the board at the appropriate place.

A steady hand, a little skill, and a lot of patience are all that is needed to thread the needle.
Plastic case is opened when game is in play, closed for pockel storage.

SIMPLE enough for a two year-old to enjoy, and difficult enough to liven up any adult party, this economical little game can be constructed in 20 minutes or less. Circuit and material for Thread the Needle are given in Fig. 2. The object of the game is to thread the needle without letting the "thread" (No. 28 wire) touch the needle. If the needle is touched by the thread, the circuit of lamp B is completed to the battery and lamp B lights up indicating failure. If you successfully thread the needle, however, lamp A lights up. You'll find that most people will fail several times before succeeding.

Solder connections directly to the lamp bulbs, battery and needle, fastening the lamp bulbs and battery to the plastic case with Duco cement. Stick the needle through a piece of cardboard or balsa wood and cement this to one side of the case. Use Duco to hold the needle point in place. Drill the hole for the machine screw contact which mounts under the needle eye before you fasten the needle.

Use stranded wire for connections if available. It will allow you to close the case more easily when the game is not being used. You may wish to coat the bulb connected to the needle with fingernajl polish or thinned red lacquer to make the game more interesting for youngsters, and you can dress the game up by painting the case if you wish.-Forrest H. Frantz, Sr.

Electronics "Numbers Game" b, John a comsiock

HOW familiar are you with the many numbers most frequently used in radio and electronics? This simple quiz-containing numbers commonly used in electronics-should give you the answer to that question. For the answers to the numbers questions themselves, see page 160.

1) Which of the following is a transistor?
a. IN543
c. CK705
b. QRK2
d. 21AP4
2) Which of the following is a vacuum tube commonly used in tolevision?
d. 6E5
c. $0 Y 4$
b. 1×2
d. IV
3) In TV, the ratio of picture width to pieture height is:
a. $6: 4$
c. 4:3
b. $3: 6$
d. $2: 1$
4) The common tape recorded speeds in inches-persecond are:
a. $331 / 3^{\prime \prime}$ and $78^{\prime \prime}$
b. $33 / 4^{\prime \prime}$ and $71 / 2^{\prime \prime}$
c. $162 / 3^{\prime \prime}$ and $45^{\prime \prime}$
d. $331 / 3^{\prime \prime}$ and $45^{\prime \prime}$
5) The common commercial power line frequency in the United States is:
b. 110 c.ps.
c. .06 kilocycles
d. 60 c.p.s.
d. 30 c.p.s.
6) What is represented by the following number designations?
a. 2 through 12
b. 13 through 83
7) What grade of solder is most often used in electronics work?
a. 40
b. 70
c. 30
d. 80
8) The field repatition rate in television is:
a. 30
b. 60
c. 20
d. 40
9) How many watts equal one horsepower?
a. 800
b. 1,000
c. 746
d. 95
10) What do the following numbers represent?
a. $162 / 3 \mathrm{rpm}$
b. 45 rpm
c. $331 / 3 \mathrm{rpm}$
d. 78 rpm
II) A black and white television channel is how wide?
a. 4.5 Megacyeles
b. 3 Megacycles
c. 6 Megacycles
d. 12 Megacycles
11) How wide is a color television channel?
a. 3 Megacyeles
b. 6 Megacycles
c. 10 Megacycles
d. 7 Megacycles

Master station (left) and substation (right) of Instant-Ready Intercom. Master station shown can select from three subetation locations.

Instant-Ready INTERCOM

By W. F. GEPHART

|N MOST home installations, intercom usage is relatively infrequent and it seems a waste of power to keep the intercom on at all times. Yet very few intercom users will tolerate the long warm-up wait required for On-Off operation of most $a-c$ operated units. One solution, of course, is to use a battery-powered intercom; but batteries require regular replacement and-in cases of infrequent usage-they deteriorate from after the current has been turned on.'

The master station, Fig. 2 (or stations, Fig. 3) is a simple, two-stage audio amplifier, using bat-tery-type tubes (see Materials list) powered by a selenium rectifier circuit supplying both plate and filament voltages. By running the output tube (V_{2}, Fig. 2) at maximum ratings, the unit has an output of close to $1 / 2$ watt. (Since all of this output is usually needed-and is never ob-jectionable-a 1 megohm fixed resistance can be substituted for potentiometer R3 in Fig. 2. If you make this change, connect the grid of V_{2} between C_{2} and the fixed resistance.)

The Talk-Listen Switch (SW1) and the Selector Switch (SW2) are conventional types, except that the Talk-Listen Switch should be spring-loaded to hold in the Listen position (see Fig. 6). The number of poles required for the Selector Switch depends upon the number of stations you want in your installation.

When multiple master stations are used (Fig. 3), the basic amplifier and power supply circuit age as fast as they do from current drain. So here's a unit (Fig. 1) that is a-c powered, yet instantly ready for use.

This unit can be used with multiple master stations and an unlimited number of substations and the volume is sufficient for home use and other relatively quiet locations. No provision is made for talking to more than one substation at a time, however, since the output is not adequate for multiple speaker operation. Normally kept Off, the unit is ready for use approximately 2 seconds

RADIO-TV EXPERIMENTER

shown in Fig. 2 is used for each master station. The switching circuits and interconnections are slightly different, however, as shown in the example in Fig. 3. A three-pole, double-throw switch (SW3A) is used as an On-Off switch instead of a SPST switch. Switch 3A acts as a power switch, and switches the station to be talked from from substation use to master station use when the power is turned On. In Fig. 3 the master unit on the left is On and the switching circuit connections are the same as those shown in Figure 2. The master unit on the right of Figure 3 is Off-that is, it is connected as a substation unit. If more than one master station is turned on at the same time, there will be a feedback squawk, but no damage will be done to any circuit component:

For single master station unit construction, wire as shown in Figs. 2 and 5; chassis layout is shown in Fig. 4. No particular care need be taken in assembling the master station units, except that the selenium rectifier and other $a-c$

Chassis $2 \times 5 \times 7^{\prime \prime}$ (Bud CB 629) R1—1 mea, $1 / 2$ watt R2-. 27 meg. $1 / 2$ watt R3-1 meg potentiometer (or fixed resistance; see toxt) R4- $2400 \mathrm{ohm}, 1$ watt R5- 5000 ohm . 10 watt, wire-wound R6- 200 ohm, 2 watt, wire-wound R7- $27 \mathrm{ohm}, 1 / 2$ watt C1- 02 mif 200 y . C2-. $01 \mathrm{mf}, 200 \mathrm{v}$. C3- $30 \mathrm{mf}, 200 \%$ C4, C5- $50 \mathrm{mf}, 200 \mathrm{v}$. C6-. $01 \mathrm{mf}, 600 \mathrm{v}$. T1= $25 \mathrm{mf}, 25 \%$. T2- infercom input transformer (Stancor A-4744) SWl-4PDT on speaker, output transformer (Stancor A-3329) SW2-4PDT spring return switth (Centralab 1451) SW2-rotary switch (Mallory type 3200J-saring load, see text) SW3-SPST togile or rotary SW3A-3PDT switch (rotary: Centralab 1450, Mallory 3242 J) (toople: Cutter-Hammer 7613-K2 or 7612-K2 Speakers V1-1U4 tube V2-305 tube SR-75 ma selenium rectifier PL-neon pilot assembly (Drake 105) CB-connector biock (see text: Jones type 140 or 141) Master Cabinet $51 / 6 \times 68 / 16 \times 103 / 1^{\prime \prime}$ (available from Allied Radio catalon \# $\# 85930$) Substation Gabinet $4 \times 7 \times 7^{\prime \prime}$ (ICA 3988)	

 MATERIALS LIST-INSTANT-READY INTERCOM
 (Bassis $2 \times 5 \times 7^{7 \prime \prime}$ (Bud CB629)
$1=1$ med. $1 / 2$ matt
R3- 2 meg potentiometer (or fixed resistance, see text)
R4- $2400 \mathrm{ohm}, 1$ watt
R5- 5000 ohm. 10 watt, wire-wound
R6-200 ohm, 2 watt, wire-wound
R7- 27 ohm, $1 / 2$ wat!
C1-. 02 mif. 200 .
C2-. $01 \mathrm{mf}, 200 \mathrm{v}$.
C3-30 mf, 200 y .
C4, C5- $50 \mathrm{mf}, 200$.
C6- $01 \mathrm{mf}, 600 \mathrm{v}$
C7-25 mf, 25 v.
T1-intercom input transformer (Stancor A-4744)

- 8000 ohm to speaker, output transformer (Stancor A-3329)
APDT spring return swith (Centralab 1451
SW2-rotary switch (Mallory type 3200J—soring load, see text)
SW3-SPST togile or rotary
SW3A-3PDT switch (rotary: Centralab 1450, Mallory 3242J)
(toogle: Cutler-Hammer 7613-K2 or 7612-K2)
Speakers
V1-1U4 tube
V2-305 tube
SR-75 ma selenium rectifier
PL—neon pilot assembly (Drake 105)
Master Cabinet $51 / 8 \times 65 / 16 \times 103 / 16^{\prime \prime}$ (available from Allied Radio,
cataloo \#985930)
Substation Cabinet $4 \times 7 \times 7^{\prime \prime}$ (ICA 3988)

components and leads should be grouped together and isolated as much as possible from the audio frequency wiring and components. This will rer duce the possibility of $a-c$ hum. If multiple master units are used, and a rotary switch with widely-spaced wafers is available for.SW3A, hum can be reduced even further, but even with the switch specified and rather haphazard wiring, the unit has less $a-c$ hum than conventional $a-c$ models.
Be sure to keep all leads in the primary of the input trans-
 former (T1) and the secondary of the output transformer (T2) isolated from power (a-c or $d-c)$ leads or grounds. This is particularly important if multiple master station units are used, since such audio frequency leads are common between units and direct connection is made to the a-c line in the power supply.
To dress them up, master units can be built into small radio cabinets (Figure 1); they can also be built into home-made boxes, however. The same is true of the substations which can be installed in a commercially available box (see Materials List), or in a $3 \times 5-\mathrm{in}$. box made of $1 / 4-\mathrm{in}$. plywood and Masónite. If a substation is to be located on a porch or other outdoor location, it should be shielded from the weather by being placed on the porch ceiling or under an eave. If a weatherproof speaker is not used, the speaker should be mounted face downward to reduce the chance of rubbing in the case of the cone warping due to dampness.
In some cases it might be desirable to have one or more master stations "portable," that is, capable of being used at more than one location. By using plugs and jacks on the intercom cable,

tem, one master station unit was placed in the house, and a second was located in a workshop in a separate building at the rear of the property. A doorbell, parallel-connected to the front door chimes, was also located in the shop, enabling front door "answering" from the workshop. The house-to-shop connection, of course, can lead to the "You either come in to supper now or you don't get any" kind of complication; but then you can always claim your unit wasn't working. by using a central connector block (CB in Figures $2 \& 3$) in an attic or basement, and running all cables to this central point. This will permit the majority of the wiring to substations to be one-pair wire. A centralized connector block is also worthwhile if any subsequent rearrangements are contemplated.

An excellent home use for this intercom system is to "answer" the doorbell. Locate a substation on the ceiling of the front porch and whenever the doorbell rings, turn unit On, switch to "Porch," and query the caller as to identity. Such use makes the disposition of salesmen or peddlers a simple matter.
In another installation of this sys-

Top viow of chastis of master station unit. Note spring loading (arrow) of Talk-Listen Switch.

TEST BELL For the Bench

 ByH. P. STRAND

EVERY electrical repair bench should have a test bell for testing continuity of low resistance circuits. Such a bell unit is illustrated in Fig. 1 and the drawings; here a common door bell and a bell transformer have been mounted neatly on a wooden base board. Leads which are completely equipped with alligator clips and insulators are connected in series with the bell and transformer to use as test leads, and insulated binding posts are provided for attachment of the 115 volt line. This piece takes but little room on the bench and is always handy when wanted.

As an example of the usefulness of this tester, an S.P.D.T. toggle switch is being tested in Fig. 1 , to determine the common lead, which is not marked. The bell will usually ring through a resistance up to about 20 ohms, depending on the individual bell and voltage of transformer. It is thus possible to use it for testing continuity of coils of low resistance, where it is necessary to pick out the start and finish, in cases where more than one coil or winding is incorporated in the coil unit. In fact, there are countless uses for a handy bell of this sort to the home mechanic.

This handy door-bell and transformer unit is used for a variety of low resistance testing. In photo above it is used to find the common torminal of an S.P.D.T. switch. Drawing below shows how hookup is made.

Mystery Coil

AEUROPEAN electrical experimenter, de la Rive, performed this interesting experiment many years ago. What the device amounts to is a floating cell carrying a coil. The cell generates a current which flows through the coil, the current in turn setting up a magnetic field 'about the coil. If an ordinary horseshoe or bar magnet is brought near the floating coil, either the coil will be attracted or repelled by it.
Such equipment may be kept on hand for demonstration purposes over a long period if the floating cell is removed from the acidulated water after use and rinsed off with clean water. The cell proper is a circular piece or plug of wood soaked in molten paraffin and carrying two electrodes and the coil of No. 22 copper wire.
The $1 \times 2 \mathrm{in}$. electrodes are fastened to the sides of the plug by means of a small wood screw used also to hold the ends of the copper helix. One electrode is cut from sheet zinc and the other is cut from sheet copper. The solution for the cell is made up of 1 qt . water to $1 / 2 \mathrm{oz}$. of sulphuric acid. Between demonstrations of the device, keep the solution in a stoppered glass bottle.- R. F. Yates.

NOW you can put together a crystal headset for the price you would ordinarily pay for a cheap pair of magnetic earphones! This crystal headset has much to recommend it. Its sensitivity, frequency range, and clarity of reproduction are superior to magnetic type earphones. Also, it weighs less than two ounces, is easy to assemble, and its "stethoscope" style (Fig. 1) eliminates headband pressure.
The high impedance and high sensitivity of this crystal headset make it ideal for use with crystal radios, but with proper connections it can be used in any earphone application. Parts for making this headset will cost about $\$ 3.25$.

Take a 24 in . length of fence wire and make a $11 / 3$-turn loop in the center by winding the wire around a $3 / 4 \mathrm{in}$. wood dowel. Form the V with curved sides as

FILE OFF FLAT IF SCREW IS TOO SHORT

MATERIALS LIST-CRYSTAL HEADSET
$24^{\prime \prime}$ length of $3 / 3^{\prime \prime \prime}$ dia. galvanized iron electric-fence wire
Two crystal earpieces (Lafayette Radio MS.111. \$1.49 eact net) Small roll $1 / 2$ to $1^{\prime \prime}$ wide Scotch transparent tape
Two phone cord tips. and/or one standard or mildget phone olug Optional: $48^{\prime \prime}$ length of plastic-covered hearing-aid cord
the connections to one earpiece to see when the reproduction sounds the most natural. A pair of phone cord tips or a midget phone plug soldered to the free ends of the cord will complete the headset.
For best results, bend the V so the earpieces are at the correct angle to pipe the sound directly into the ear passages. Bass response is best when the ear inserts fit into the ear passages firmly making a good acoustical seal. Remember that crystal phones should not be subjected to dc voltages, or to temperatures over $130^{\circ} \mathrm{F}$.
When using this crystal headset with a crystal radio, connect them as you would an ordinary pair of magnetic earphones. Figure 4 shows how these crystal earphones can be connected to the
output stage of a vacuum tut volt, .05 mfd. blocking capaci high-grade unit. The 1 megohm is the earphones protects the earpt $7 / 3$ voltages in case of blocking capacit $\delta_{8} 0_{0} 0$.
ART Trauffer.

Improved Razor-Blade Dełeć

- Here is a more rugged version of the familiar foxhole, razor-blade "crystal" detector. The original was a piece of pencillead bridged across the edges of two razor-blades and sometimes used by G.I's in fox-

WASHER OR
FAHNESTOCK IF BLUE COATING ON holes to pick up local broadcasting stations. This was fairly sensitive, but it was very difficult to hold an adjustment, as the least vibration or jar caused the lead to rock and roll on the blade edges, resulting in erratic and noisy reception. For the arrangement shown, blue steel single edge or double edge blades (such as Pal razors) seem to be the most sensitive, but many other blades also have sensitive spots on them. Use with a conventional circuit and a good antenna and ground.-Arthor Trauffer.

N ONE evening an amateur can assemble the 6 -transistor super-het kit sold by Lafayette Radio, Dept. HPS, $165-08$ Liberty Ave., Jamaica 33, N. Y., under their number KT 119. Lining up is simplified by IF transformers which are pre-set at 455 kc . and require little adjustment. Adjusting the tuning capacitor trimmers and the oscillator coil may be done by ear or with a signal generator.

Powered by a 9-v. battery, the set has a built-in speaker for portability but it will operate a separate $8-\mathrm{in}$. speaker with room-wide volume. The kit costs $\$ 33.50$, the cowhide case $\$ 2.95$ extra.

Nine-volt battery gives room-wide volume.

An 8-in. speaker can be used instead of the builtin one for better volume and tone. Just plug in at the Jack. The notched plastic wheel in the slot it the volum 'control.

Crystal Microphone

By ARTHUR TRAUFFER

A simple, high-impedance mike-for ham rig use or with tape or disc recorder-that will cost you less than $\$ 3$ to build

THIS simple little crystal "mike" will give good service with your ham rig, P.A. system, tape or disc recorder, or wherever an expensive microphone is not required. It is, of course, not the most rugged mike you can buy, but you can't expect everything of a project that should cost you less than $\$ 3$ to build.
Figure 3 shows you what goes into this project. Note that the rubber foot pedal base is hollow inside making for easy assembly and wiring. It also won't scratch polished furniture surfaces, and the soft rubber cushions the mike against thumps and bumps. A short length of metal spring protects the cable from continual bending where it enters the base.

The small crystal earphone used for the mike unit has high sensitivity and fidelity considering the low price (about $\$ 1.49$ net). This is not too surprising, since any transducer that gives good results as an earphone will also give good re-
 sults as a microphone.

In building this mike, start by enlarging the opening in the crystal earphone, to give it greater efficiency as a mike unit. Pry off the front cover of the earphone unit with a knife blade or single-edge razor blade, but be careful not to touch the thin diaphragm covering the crystal unit as it is easily damaged (Fig. 4). Now twist the ear-plug off the cover, and enlarge the opening

(A) Crystal earphone unit as it comes from dealer-
(B) After front cover has been removed and opening enlarged with rat-tail file. Cover rim is then snapped back on, without injury to diaphragm.

Note how strainer screen has been cemented to inside edges of hole cut in bottom of can (B). Mike unit is then taped (A) for a snug fit.
in the cover to a diameter of about $5 / 8$ inch, using a rat-tail file. Then snap cover rim back on the earphone again.

For the mike housing, I used a Nó. 1-size "Smooth-On" Iron Cement can; these are about $13 / 18$ inches in diameter and have a nicelooking friction lid. The can was cut off to a length of about $11 / 8$ inches using a fine-tooth thin-blade hacksaw. The rough edge was then smoothed with emery paper.

A hole was chopped out of the bottom center of the can and carefully enlarged to a diameter of about $7 / 8$ inch, using a rat-tail file. The rough edge was smoothed, using a knife blade and emery paper wrapped around a wood dowel.

A $11 / 8$ inch diameter dise was cut from finemesh brass strainer screen and cemented to the inside bottom of the

Large soldering lug is clamped under hex nut holding can lid to top and of swivel. Shield of cable is unwoven and twisted together to form wire (N).

MATERIALS LIST-CRYSTAL MICROPHONE

 No. Description1 tin can 11/16" dia., with friction lid (The \#1-size "SmoothOn" Iron Cement can is ideal)
$11 / 2 \times 11 / 2^{\prime \prime}$ square of fine-mesh brass strainer streen
ball-\&-socket swivel (made for electrical fixtures) with $1 / 8$ NPT threads on both ends
$6^{\prime \prime}$ length of $1 / 8$ iron pipe with $1 / 8$ NPT threads on both ends
1 round rubber cover for automobile foot pedal ($31 / 4^{\prime \prime}$ dia. and $3 / 4^{\prime \prime}$ high). (Western Auto Stores, 25 c pair)
$11 / 2^{\prime \prime}$ length of $3 / 16$ or $1 / 4^{\prime \prime}$ OD steel spring (a piece of dime store kitchen-window-curtain spring was used here) Amphenol 75.MC1F female microphone cable connector $5 / /^{\prime \prime}$ dia. plated brass washers with $3 / 8^{\prime \prime}$, holes brass hexagon locknuts with $1 / 8$ NPT threads
soldering lug with $3 \mathrm{~s}^{\prime \prime}$ hole
1 small crystal earphone unit. used as mike unit (Lafayette Radio, Dept. 106, 165-08 Liberty Ave., Jamaica 33. N. Y., Catalog MS-111. $\$ 1.49$ net. Or Radio Shack Corp., Dept. M106, 167 Waslington St., Boston 8, Mass., Catalop R-9021) Length of Belden No. 8411 shielded microphone cable
can with Duco cement (Fig. 5). The earphone cord was clipped off leaving about $21 / 2$ inches on the unit, and $3 / 8$-inch wide tape was wrapped around the outside of the unit (Fig. 5), so that it would make a snutg fit.

Figures 3 and 6 show how the can lid is joined to the top of the ball-and-socket swivel using a $1 / 8$ NPT brass hex nut with a large soldering lug between the nut and the inside of the lid. Drill (or drill and file) a $3 / 8$-inch diameter hole in the center of the can lid to pass the male threads on the top of the ball-and-socket swivel. Scrape off the coating around the hole on the inside of the can lid so the soldering lug makes good contact.

Using a $1 / 8$-pipe (NPT) die, put a few threads on one end of a 6 inch length of $1 / 8$-pipe, and twist the end of the pipe into the female threads on the bottom of the ball-and-socket swivel. The other end of the pipe is threaded for a length of about $5 / 8$ inch. Punch a hole in the center of a $31 / 4$ inches diameter round rubber automobile foot pedal cover; and enlarge the hole to $3 / 8$-inch diameter using a rat-tail file.

Fasten the $1 / 8$-pipe upright to the rubber base using two large washers and two brass $1 / 8$ NPT hex nuts (Figs. 3 and 7). Punch a hole of the required size in one side of the rubber base, and insert a $11 / 2$-inch length of $3 / 18$ or $1 / 4$-inch

Boftom view of mike base showing how cable passes through protect. ing spring and up into stand tube.

OD steel spring into the hole (Fig. 7). The microphone is now ready to be wired up and the can closed.
Pass one end of a length of Belden \#8411 mike cable through the steel spring and up into the $1 / 8$-pipe upright and through the swivel (Figs. 3 and 6). Strip the outside plastic insulation off the end of the cable for a length of about 1 inch. Using a fairly large size sewing needle, unweave the shielding covering on the cable for a length of about $3 / 4 \mathrm{inch}$, by picking one strand at a time; then twist the loosened strands together to form one twisted wire (A in Fig. 6).
Remove the insulation on the center conductor of the cable for a length of about $1 / 4 \mathrm{inch}$. Now solder the cable shield and one mike unit lead to the soldering lug. Solder and tape the remaining mike unit lead to the center conductor of the cable, as in Fig. 3.
Now close the can, making sure that the bottom of the can makes good electrical contact with the friction lid so the can acts as an efficient shield for the mike unit to prevent hum pickup. Connect an Amphenol 75-MC1F cable connector to the free end of the cable. Remove cable-protecting spring from $75-\mathrm{MC} 1 \mathrm{~F}$. Strip outside in-
sulation from end of cable and prepare shielding conductor as explained above. Strip insulation from end of inside conductor. Solder shield to inside end of spring. Push spring and cable into 75-MC1F, letting inside conductor pass through eye in center of $75-\mathrm{MC1F}$ to hold spring securely. This takes some practice.

Uses for Crystal Mike. Since the crystal earphone unit used here has very high impedance, you can connect this mike directly into the input grid circuit of an amplifier without using an impedance-matching transformer. Of course, any other good small crystal earphone unit or crystal mike unit can be used instead of the one we used. You could also use a small highimpedance magnetic earphone or mike unit, but if you use a low-impedance magnetic or dynamic unit you will have to use an impedance-matching transformer for best results.

If desired, all the metal parts except the screen can be given a coat of enamel of the desired color. Or if you prefer a nice chrome job, you can buy $1 / 8$-pipe and ball-and-socket swivels already chrome-plated. Then you only need to take the can and screen to a plating shop for chrome plating!

Auto Radio Vibrator Tester

VIBRATORS are found in almost all auto radios; they convert the low voltage d-c current supplied by the auto's battery to alternating current ($a-c$) which is then put through a step-up transformer to supply the high voltage which is then rectified for the d-c plate voltage of the radio's vacuum tubes. When your auto radio behaves in an erratic manner, or fails to work at all, a defective vibrator is the usual cause of the trouble.

The vibrator is enclosed in an aluminum can; it has
 either three or four pins on the bottom which press into a socket (like a vacuum tube). To remove the vibrator, remove the back cover of the radio and pull out this aluminum can. The vibrator has dif-ferent-sized base pins, so that it can only be replaced in one way-the correct way.

Until recently, the usual way to determine whether a vibrator was good or defective was to substitute a new vibrator for the old. But now, a vibrator tester is on the market, sold by Lafayette Radio for $\$ 2.95$, called the Vibrachek. It has base pins which fit in the octal sockets of
tube testers and it comes in two models, the V-3 for 12 v . 3 -prong vibrators, the V-4 for 6 v . and 12 v. 4-prong vibrators.
If the vibrator under test is good, two small lamps on the side of the Vibrachek will light with approximately equal brilliance and will flicker at about the same rates. A defective vibrator will cause one lamp to light much brighter than the other in some cases, in others only one lamp will light, in still others neither lamp will light.-H. P. S.

Quick-Repair of Your Car Radio's

THE number one cause of car radio troubles is the failure of the vibrator in the radio's power pack. The vibrator converts the low d-c voltage supplied by the car's storage battery into squarewave d-c pulses which can be fed into the primary of a step-up power transformer, rectified in the secondary circuit and used as B+ in the car's radio.

So great a troublemaker is the vibrator, that recently two leading car radio manufacturers introduced sets which eliminate the need for a vibrator. Unfortunately, only a handful of these new, vibrator-less sets are in use. The great majority of car radios, meanwhile, must continue to rely on vibrators-and vibrators are not overly relia ble.

A vibrator consists of an electromagnetic coil and a two-contact reed (or armature) which vibrates between two stationary contacts (Figs. 1 and 2). Power from the battery is delivered to the vibrator alternately through the upper and lower halves of the primary of the step-up transformer in the power pack. When you turn on your car radio, the vibrator's electromagnetic coil is energized and the reed is pulled toward stationary contact B. The instant the reed contact touches stationary contact B, the electromagnetic coil is short-circuited and thus

[^3]
de-energized. The reed flies back,

its inertia carrying its other contact to stationary contact A, the electromagnetic coil again is energized, the reed is pulled again toward stationary contact B and the cycle repeats itself again and again.

Vibrating at 115 cps through its neutral position, the reed reverses the d-c delivered to the power transformer $571 / 2$ times per second. These pulses, fed into the alternate ends of primary of the transformer in the power pack, are stepped-up and rectified to provide the B voltage for the car radio.

Trouble arises-and it often doeswhen the reed contacts oxidize at one or both of the stationary contacts. Then the reed sticks, fails to vibrate. A stuck vibrator means no reception. It can generally be detected by the absence of the soft
hum you usually hear when you turn your cat radio on. (If the contacts have oxidized only on the A side, however, you may still hear some hum, even though the vibrator reed, and consequently the radio, is inoperative.)
To remedy stuck vibrator contact points, first remove the vibrator from the radio. This used to require removal of the entire set from behind the dash, but in recent years sets have been built so that removal of one or two screws securing the cover plate gives access to the chassis.
On a typical car radio chassis you'll see two aluminum cans. One of them-the smaller-is an electrolytic filter capacitor. The other, larger can contains the vibrator. It's provided with a pin base, and pulls out just like a tube.
With tin snips or sharp diagonal wire cutters, separate the rolled aluminum can from the Bakelite pin base. Underneath this shield can is a molded sponge rubber cup which acts as a noise
silencer. The vibrator itself is mounted on a sponge base, further to reduce noise.
Remove the cup and gently draw back the reed and insert a thin auto ignition point file between its contact and stationary contact A. Draw the file back and forth until the contacts are bright. Repeat this same operation with the other pair of contacts. The gap between each pair of contacts should be just wide enough to pass a strip of paper the thickness of the cover of this magazine.
Now replace the sponge rubber cup over the vibrator and make it secure with strips of adhesive or masking tape as in Fig. 3. Operating the vibrator without the shield ordinarily does not introduce interference into the set, but to play it safe, wrap the vibrator neatly in aluminum foil. Make sure that the foil makes positive contact with the chassis when the vibrator is replaced and doesn't short out any pins.-T. A. B.

Making Small Record Players Sound Like Thoroughbreds

A simple circuit alteration con verts any portable record player into a quality sound system that can employ your TV or radio console speaker to emphasize those
otherwise lost bass tones.
player's circuit to afford fullrange sound reproduction by employing the large speaker and baffle arrangements of console TV or radio receivers in conjunction with the player's speaker. By using a -simple cable and jack arrangement, the speaker of the portable record player will function as tweeter for high frequency response and the console speaker will function as woofer for low frequency response.
The pictorial wiring plan (Fig. 2) shows how this dual speaker system functions. To make the change, drill a $3 / 8-\mathrm{in}$. hole on the motorboard of the record player and fit it with a midget phono jack. Then, solder two leads to the voice coil lugs of the record player speaker terminating them on

THE quality of audio reproduction in most portable record players is limited because of the small 4 and 5 in . PM speakers which they usually employ due to space limitations within their carrying cases. It is, however, a simple operation to modify a record

Hecord player and console speakers are operated in parallel by plug-in cable. Romoval of plug from telephone jack automatically sestores console speaker to normal operation.
the jack lugs, and connect a length of plastic covered "zip" fixture cord to the pin and shell of a midget pin plug which matches the phono jack. The other end of the fixture cord is connected to a standard $1 / 4$ in. telephone plug.

Now, enlarge one of the screw holes in an ordinary steel or brass $1 / 2 \times 2 \times 2$-in. angle bracket to $3 / 8 \mathrm{in}$. and screw-fasten this bracket to the back of the console set at a 45° angle as shown in Fig. 3. Next, mount a Mallory \#2A closed circuit jack in the $3 / 8$-in. bracket hole. Mounting the telephone jack on the angle bracket allows for easy access to it without moving the console set away from the wall. Moreover, the set is in no way defaced, and can be instantly restored to normal operation by pulling the large telephone plug out of the jack.

Disconnect one of the console speaker wires and attach to jack lug A, Fig. 2, and run a length

	MATERIALS LIST-PHONO ADAPTOR
No.	Midget phono Jack \quad Description

of hook-up wire from the vacated speaker lug to jack lug B. Finally, run a length of hook-up wire from the speaker lug, which still has its original wire connected to it, to the frame lug of the closed circuit jack.
To use the player alone, put on a record and warm up the amplifier. Insert the midget phono pin plug in the motorboard jack and insert the telephone plug into the jack mounted on the rear of the console. It is not necessary to turn on the radio or TV set; inserting the telephone plug into the closed circuit jack has automatically disconnected the console speaker from the set so that it will be driven by the record player amplifier. If you enjoy ball games, fights, etc., but are annoyed by never-ending commercials, turn on the TV set, put a long-playing record on the phonograph, and enjoy the game with music and sans commercials.-T. A. B.

SINGLE CELLS OR BATTERIES CAN BE CONNECTED TO INCREASE VOLTAGE OR CURRENT

4 CELLS $=6$ VOLTS 25 AMPERES SERIES CONNECTIONS OF SINGLE DRY CELLS VOLTAGE OFICELL X NUMBER OF CELLS = VOLTAGE of GROUP, CURRENT REMAINS AMPERAGE OF 1 CELb.

SERIES-PARALLEL CONNECTIONS VOLTAGE OF ICELLXNUMBER IN SERIES = VOLTAGE OF GROUP
CURRENT OF I CELL \times NUMBER IN PARALLEL $=$ AMPERAGE OF GROUP

Front-panel and side-chassis views of 7-in. conversion (see Fig. 3). Note that power supply is placed at rear of chassis.

In TV sets using tubes with magnetic deflection and focus, conversion problems are slightly greater and the focus usually has to be a mechanical control on the back of the unit, near the neck of the tube.
For most uses, the vertical amplifier in the scope should be more sensitive than the horizontal, since the latter is usually required only to amplify the sweep circuit pulses enough to cover the tube face. The

By W. F. GEPHART

STANDING IDLE in the back rooms of many TV-radio service shops, in dealer's trade-in warehouses, and in many attics and garages are hundreds of small-screen television sets that today are considered worthless. Most of these sets, however, can be converted to experimenter's oscilloscopes. The parts can be salvaged and placed on a new chassis and panel, or the existing chassis and cabinet can be adapted as-is.

Such a conversion consists of re-building some of the major circuits in the set, but usually the majority of the parts required are in the set as it stands: Since an oscilloscope consists of two highgain amplifiers, a cathode ray tube with its associated controls, two power supplies, and a sweep circuit (see block diagram, Fig. 2), a TV set which has electrostatic deflection and focus (such as one with a 7EP4, 7GP4, 7JP4, 10GP4 or 10HP4 picture tube) can usually be used with the CR tube and associated controls and the high-voltage supply just as they appear in the set. In many sets the low-voltage supply is more than adequate (both current and voltage-wise) for oscilloscope use, leaving only the two amplifier circuits and sweep circuit to be designed and built.
gain of the horizontal amplifier should be fairly high, however, to permit the use of external sweeping voltage when required. In both cases, the amplifiers should be push-pull output, to give equal deflection on either side of the center of the tube face.
The gain of the amplifiers will depend upon the type of picture tube in the TV set. Most 7 -in. and $10-\mathrm{in}$. electrostatic deflection picture tubes have a deflection sensitivity of 75 to $250 v$. per in. (the exact figure for individual tubes is given in tube manuals). This means, for example, that a difference of $150 v$. between opposite deflection plates of the tube will move the electron beam 1 in. off center. If the polarity is reversed, the beam will move 1 in . off center in the other direction. An alternating voltage of $150 v$., then, will swing the beam $2 \mathrm{in} .-1 \mathrm{in}$. on each side of center. Therefore, the voltage ($A F$ or $R F$) required to "sweep" the tube face from side-to-side (or top-to-bottom) will equal the tube's deflection v./in. times the radius of the tube face. Thus, a 7 -in. tube with a $150 v . / \mathrm{in}$. deflection would require an amplifier with about $525 v$. ($150 \times 31 / 4$), while a $10-\mathrm{in}$. tube with the same rating would require about $750 v$. (150×5).
Don't let these high output voltages alarm you. Virtually no power is required, and voltage am-

plifier stages can easily furnish these voltages.
In magnetic deflection tubes, the deflection/in. data is not available, and must be determined experimentally. To do this, set up the picture tube, with proper anode and filament voltages, so that a spot appears on the face of the screen. Then apply experimental voltages to the vertical and horizontal deflection yokes to see what voltage is required to move the spot 1 in .

In determining amplifier gain, it must be decided what over-all sensitivity is required. Usually $.1 v$. per in. (meaning that $.1 v$. input to the
amplifier will cause the CR tube beam to move 1 in.) is the minimum input sensitivity acceptable; $.05 v . / \mathrm{in}$. is better. If the tube has a deflection rating of $150 \mathrm{v} . / \mathrm{in}$., and the over-all sensitivity is to be 05. v./in., the amplifier must amplify $.05 v$. up to 150 v ., or it must have a voltage gain of 3000 . Since one stage cannot very well have such high gain and high-voltage output, two or more stages will be needed, but neither stage gain need be too high, since the total gain is the product of the individual stage gains. To get a gain of 3000 , for example, one stage could have a gain of 50 , another stage a gain of 60 , the total being 50×60, or 3000 .

Amplifier design data is available in many tube manuals, and from this data circuits can be designed around tubes and parts in the TV set. Select a pair of tubes from the set (preferably high-gain triodes or remote cut-off pentodes) and, using the resistance-coupled amplifier data, select the values giving the highest gain. Note the bias on the tubes under the recommended conditions, and divide the output voltage desired (total deflection voltage required to cover the tube) by the voltage gain of the circuit, making sure that the input voltage required (to get the desired output voltage) does not exceet the tube's bias. If it does, other tubes of higher gain

must be selected.
Next select another pair of tubes from the TV set, and select data from the charts that will furnish an output voltage sufficient to fully drive the stage planned above. Determine the voltage gain of this stage from the charts, and, multiplying by the voltage gain in the first stage designed, see if sufficient over-all gain has been developed. If not, continue with another stage.
The phase inverter, which has no gain, should be at a low level so that full advantage of pushpull operation can be utilized in the high gain stages.

Here's how these calculations would be made: Using a 7EP4 CR tube, which requires 100 $v . / \mathrm{in}$. deflection, and desiring an input sensitivity of $.05 v . /$ in., total voltage gain required is 2000 . The resistance-coupled amplifier design charts show that a 6AU6 (with proper resistances, etc.) will give a voltage gain of 230 with a grid bias of 2.1 v . Dividing this gain of 230 into $375 v$. (the required output voltage for full deflection), gives a required input voltage of about $1.7 v$. This input voltage is within the bias of the tube. To drive this, $1.7 v$. is needed; the tube data charts show that a 12AU7 (with proper resistance, etc.) will give a voltage gain of 12 , which, with an input of about .14 volt, will give the required output. The total gain of these two stages is $12 \times 230=$ 2760, which is in excess of requirements, and-assuming no losses-would mean that an input voltage of .132 volts would give full-tube deflection (or the equivalent of about . 038 v./in. input). Since this input sensitivity is greater than required, a no-gain phase inverter can be put in front of these stages and the unit will still have the desired over-all gain.

The horizontal amplifier is designed in the same way, again using tubes from the TV set whenever possible. Usually an input sensitivity of $.5 v . / \mathrm{in}$. is sufficient for this purpose. Since power supplies in TV sets are usually ample to power all of these amplifiers, the remaining step is to design a sweep circuit for your scope.

There are two general types of sweep circuits used in commercial oscilloscopes: 1) the gasdischarge tube type, and 2) the multivibrator type. The gas-discharge tube is the simplest type, but it has limitations of maximum sweep frequency (usually 30,000 to 35,000 c.p.s.).

When the sweep frequency of a scope is equal to the frequency of the vertical input signal, one complete cycle will appear on the screen. When the input frequency is twice the sweep frequency, two cycles will appear, and so on. When the input frequency is more than 10 times the sweep frequency, the pattern becomes difficult to read, particularly when using a small CR tube. For example, with a 7 in . tube when there are 10 complete cycles on the screen, each cycle is less than $3 / 4 \mathrm{in}$. wide.
The maximum sweep frequency required would then depend upon the normal use of the scope. In TV work, where very high frequencies are encountered, a high sweep frequency would be required and a multivibrator sweep circuit would be necessary. In audio and low frequency $R F$ work, a lower sweep frequency could be used and a gas-discharge sweep circuit would be adequatc.
Very low sweep frequencies (such as 20 or 30 c.p.s.) are not feasible with a TV tube oscilloscope. The persistency of the coating on TV

SQUARE WAVE CONVERTER
tubes is less than that on conventional CR tubes, and the trace (which is white, incidentally, not green) will disappear at low frequencies.

To lock in the pattern, a part of the vertical input signal is fed into the sweep circuit as a synchronizing voltage. This is taken from the vertical amplifier, but it should be a very low voltage to prevent distortion. The exact point for tapping to secure this voltage, and the dropping resistances to be placed in the line, can be determined by trial and error, using the lowest voltage that will lock the pattern in.

Figure 3 shows the complete schematic of a 7 -in. oscilloscope made from a discarded TV set. The majority of the components outlined in grey were secured from the TV set itself. Figure 4 shows three typical phase inverters; Figs. 5 and 6 , the two types of sweep circuits.

Basically, these are the major circuits required for an oscilloscope, but another useful circuit is that shown in Fig. 7. Distortion is more evident in square waves than in sine waves, and many scope users prefer to convert sine waves to square waves for scope viewing. Figure 7 shows a simple square-wave converter that can be built into the scope if desired, preferably in the vertical input section (as shown in Fig. 2).
When making your conversion, remember:

1) Most TV set high-voltage supplies consist of an $R F$ oscillator whose output is fed into an air-core transformer, and then to a high-voltage rectifier.

This circuitry should be well-shielded, hoth from the standpoint of $R F$ shielding, and high-voltage protection. Usually the high-voltage supply, complete in its shielding, can be transferred from the TV set.
2) Electrostatic deflection picture tubes are casily affected by stray ac fields (this will show up as a thick or wavy line trace instead of a sharp line), and good ac shielding should be used throughout your scope. If the power transformer is not shiclded, place a steel shield plate (or the chassis) between it and the CR tube. In some cases, a steel shield may also be required around the neck of the CR tube.
3) Certain picture tube controls (such as centering, brightness, etc.) have extremely high voltage on the controls; they should always be used with an insulated shaft. Also, whenever possible, all controls and components carrying these high voltages should be isolated from other controls or components.
4) If at all possible, when the scope is built on a new chassis, the picture tube mountings from the TV set should be used. CR tubes are somewhat delicate, and extremely dangerous if they shatter. Care should be exercised when mounting the tube to be sure that no strain is placed upon it.

Under-chassis view of 7 -in. conversion. Scope was built on new chassis, using some new components, many from TV set coaverted (see Fig. 3).

Kitchenware for UHF Experimentation

- Plastic food containers make good looking lowloss chassis and cabinets for various ultra-high-frequency assemblies. Many of these containers are made of Styron, a member of the polystyrene family and a very $\mathrm{g} \circ \mathrm{ol}$ insulator. Containers a re cheaper than sheet polystyrene, and come already formed. Photo shows 2 styles which are especially handy. The round one is an experimental FM crystal set using a germanium diode, which slope-detects close-by FM stations.-A. T.

5) If the set is to be completely re-built on a new chassis, a long, narrow chassis is preferable, with the horizontal amplifier down one side, the vertical down the other (both inputs at the front), and the other circuits in the middle. In such cases, both the high and low voltage power supplies should be at the back of the chassis, as far from the input as possible.
Figures 1 and 8 show views of a re-built TV tube to oscilloscope conversion. Note that the power supplies are at the back of the inner-panel (which has a steel shielding plate on the front of it), and that the amplifiers are built down the side of the chassis.

- When soldering on top side of radio or TV chassis, drbpping solder in an open tube socket can cause trouble. Eliminate this possibility by placing a strip of wide adhesive tape over the open socket.-H. Leeper.

An excellent example of CAP ability to adapt material at hand for maximum versatility is this combination ambulance-radio atation-equipment trailer maintained by the O'Hare CAP Squadron for emergency use in the Chicago area.
fore the Japanese attack at Pearl Harbor, the Civil Air Patrol has grown until today it has more than 91,000 volunteer members. Its founders were civilian pilots who wanted to do their part toward making America strong, but who-for physical or other reasons-were unable to join the armed services. Today, some 51,000 of CAP's members are cadets-young men or women 14 years of age or older who are engaged in an intensive aviation education program.

Described by officials of the

|T IS a very slim link, indeed. Most of the bridge's foundations have disappeared and the remaining structure has been pounded and tortured until only one twisted girder is left in place.

Within the town and throughout the surrounding farmland, hundreds of homes have been washed out. Streets are fooded, commerce is at a standstill, thousands of persons are in need of food, warm blankets, dry clothing and medical supplies.

But how are rescuers to know exactly what is needed-and where? It is imperative that some means of communication with East Stroudsburg authorities be established, and the call goes out for volunteers.

First to respond is Warrant Officer Philip Hardaker, a member of the Civil Air Patrol's Stroudsburg Squadron. Clutching his small VHंF transceiver tightly in one hand, Hardaker inches painfully across the single remaining girder of the railway bridge.

He reaches the far side just in time. Only minutes after he has crossed, the girder gives way and topples into the river below.

For the next 72 hours, Hardaker's small VHF transceiver keeps East Stroudsburg in contact with CAP stations across the river and with CAP aircraft circling overhead. His messages enable armed services helicopters to pinpoint the location of marooned families and to drop supplies to them. His work is credited by rescue officials as being responsible for saving many, many lives. (The exact number of persons who perished in the great flood of 1955 is unknown, but it is a fact that more than 80 bodies were found in the Stroudsburg-East Stroudsburg area alone after the flood waters had subsided.)
Hundreds of stories like Hardaker's are on file at Civil Air Patrol's National Headquarters in Washington, D. C. What, then, is this CAP radio system? How is it staffed, equipped and organized? Who does the maintenance? And who pays the bills?

Before attempting to answer these questions, let's take a look at the Civil Air Patrol organization as a whole and see what makes it tick. Founded on December 1, 1941, just six days be-

United States Air Force's Air Rescue Service as its "right arm," CAP members use their own private planes and liaison planes donated by the Air Force, Army and Navy to fly each year more than 60% of the total search hours flown by all agencies on aerial searches within the continental limits of the United States. Some 6000 of these light planes, together with more than 11,700 fixed, mobile and airborne radio stations, can be mustered in an emergency.
They can be put to work in a surprisingly short time, too. Just recently, for example, a flying farmer en route from Springfield, Illinois, to Danville in the eastern part of the state, was reported overdue by the Civil Aeronautics Administration. Although the report came in dur. ig the small hours of the morning, 20 aircraft and as many radio stations were in service by dawn. They found their target in less than three hours and many of the search participants were back working at their regular jobs by noon of the same day.
A routine mission, but it speaks well for the thousands of hours CAP units spend annually in training to maintain their proficiency.
What kind of pay do Civil Air Patrol members receive for their services? The answer: nothing whatsoever. They even buy their own uniforms, the U.S. Air Force uniform with distinctive CAP insignia. Adult members pay an annuual membership assessment for the privilege of promoting aviation. Although the Air Force does pay for fuel and lubricants used by CAP members on Air Force-requested missions, the only real compensation most members get is the satisfaction of a job well done.
Organized into eight regions covering the 52 wings (48 states plus the territories of Hawaii and Alaska, the Commonwealth of Puerto Rico and the District of Columbia), CAP members are further subdivided into some 2500 groups and squadrons. Each of these units is authorized to use two medium-frequency, fixed radio stations and as many mobile and airborne stations as necessary. Flexibility, mobility and reliability, the keynotes of the net, enable CAP to blanket the United States with dependable communica-

CAP WING

Alabama
Alaska
Arizono
Arkansas
Califarnia
Colarado
Connecticut
Delaware
District af Calumbia
Florida
Georgia
Hawaii
Idaho
lllinois
Indiana
lowa
Kansas
Kentucky
Lovisiana
Maine
Massachusetts
Maryland
Michigan
Minnesota
Mississippi
Missouri
Montana
New Jersey
Nebraska
Nevada
Now Hampshire
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode island
Puerto Rico
South Carolina
South Dakota
Tennessee
Texas
Utoh
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

WING CALL
KIG-442
KWA. 677
KOF-424
KKI. 719
KME-284
KAF-357
KCC-590
KGC. 462
KGC. 463
KIG-444
KIG. 443
KUA-341
KOB-425
KSC-952
KSC. 953
KAF-35B
KAF-359
KIG-445
KKI-720
KCC. 591
KCC. 592
KGC. 464
KQD. 405
KAF. 360
KKI-721
KAF. 361
KOF. 426
KEC-994
KAF-362
KOD. 427
KCC-593
KKI. 722
KEC. 995
KIG-446
KAF-363
KQD. 406
KKI-723
KOF-428
KGC. 465
KCC-594
WWA. 353
KIG-447
KAF-364
KIG-448
KK1-724
KOF-429
KCC. 595
KIG. 449
KOF-430
KQD-407
KSC-954
KOF-431

FIXED

Golden Rod	Hot Rod	Ram Rod
Sourdough	Mulluk	Aurora
Thunderbird	Geronimo	Tomahawk
Dogwood	Razorback	Diamond
White Bear	Black Bear	Brawn Bear
Pikes Peak	Red River	Blue River
Nutmeg	Rambler	Racket
Gabby	Vagabond	Barfy
Aero	Aerodyne	Aeronaut
Sparrow	Crane	Eagle
Red Star	White Star	Blue Star
Firebrand	Mobile	Hiboy
Mogpie	Rabbit	Hornet
Red Fox	Yellow fox	Blue Fox
Red Fire	Blue Fire	Green Fire
Corn State	Bulldog	Cyclone
Jayhawk Post	Jayhawk Bug	Jayhawk Bat
Middleground	Whirlaway	Jet Pilot
Magnolia	Muskrat	Pelican
Pinetree	Pinekarr	Pineayr
Freedom	Pilgrim	Clipper
Plant	Tug	Jet
Red Robi	White Rob	Blue Robin
Starfish	Dog Fish	Cot Fis
Mockingbird	Jay Bird	Snow Bird
Blue Bird	/Red Bird	Black Bird
Father	Mother	Angel
Zigrag	Domino	Aircan
Wigwam	Buffalo	Meadowlark
North Wind	Yellow Jacket	Red Spider
Profle	Bobeat	Saucer
Pueblo	Zuni	Navajo
Empire	Tomeat	Wildcat
Red Dog	Blue 'Dog	Mad Dog
Black Foot	Sioux	Mohawk
Black Hawk	Gray Howk	White Hawk
Sooner	Oilwell	Gaswell
Beaver Fox	Beaver Muskrat	Beaver Bird
Keystone	Rolling Stone	Flight Stone
Rhody	Little Rhody	Air Rhody
Pineapple	Sugar	Hurricane
Kiddy Car	Side Car	Box Car
Dakota	Mandan	Cheyenne
Blue Chip	Red Chip	Gold Chip
Eagle Nest	Gold Eagle	Blue Eagle
Uncle Willie	Uncle Mike	Uncle Able
Pico	Marble	Mansfield
Blue Flite	Green Flite	Red Flite
Fir	Maple	Ash
Lowland	Overland	Highland
Badger	Scooter	Buzzard
King	Queen	Jock

CAP planes must fly low and slow over rugged, often dangerous terrain to locate victims of air crashes and othor disasters. When the "target" has been found, a message flashed over the CAP radio net will bring a radio-equipped mobile support unit to the scene in a hurry.
tions support for Civil Air Patrol's aerial activities.

Most CAP radio equipment is furnished by the members themselves. A small proportion comes from military surplus stocks. Transmitters range in power from portable units of less than one watt output to husky 400 -watt control stations.

Some equipment is handtailored for CAP use by talented members. One excellent example of such handmade equipment is the tiny $1 / 2$ watt, dry-cell powered VHF transceiver built by Major Leo Streff of Paxton, Illinois, the Illinois Wing's Director of Mobile Communications. Designed for use in light planes not equipped with electrical systems suitable for powering radio equipment, Streff's unit has given consistently good results at ranges up to 50 miles from altitudes of 2000 feet.

Quality standards for CAP radio stations are high. All transmitters must be crystal-controlled and capable of operating within $.01 \%$ of frequency. Monitor stations in each region make frequent checks to insure that all equipment is remaining within tolerance

Light, compact equipment is extremely imporiant to the Civil Air Patrol. Here, Major Leo Stretf, Director of Mobile Communications for the Illinois Wing, is shown demonstrating the tiny $1 / 2$ watt transceiver he designed for use in CAP's light planes to hin wife, Captain Evelyn Streff, Illinois' Director of Communiea-
tions Training.
and that operators are confining their transmissions to official CAP business.
Although operating on military frequencies loaned to its civilian auxiliary by the U. S. Air Force, control of the member-owned stations remains under the jurisdiction of the civilian unit commanders. Six high frequencies and onel wery high frequency are presently in use, with another very high frequency to be added shortly.
The high frequency wave lengths are used primarily for intra-state traffic over distances of 200 or 300 miles between fixed and mobile stations. Because of its line-of-sight characteristics, VHF is reserved primarily for ground-air, cadet training and local communications, although many operators have erected elaborate towers and antennas to extend the advantages of clear, static-free VHF bperation over considerable distances.
"Tactical" call signs are used by all CAP stations. Many of them are derived from state or regional nicknames, or from major industries.
"Badger" and "Corn State," for example, appropriately describe Wisconsin and Iowa base stations. The Wing carrying this patriotic practice to the furthest extent is probably Oklahoma, where base stations, mobiles and aircraft are known respectively as "Sooners," "Oilwells," and "Gaswells." In states where it is permitted, many CAP members who have equipped their automobiles with mobile radios use abbreviations of their CAP call signs on their license plates.
Civil Air Patrol radio operators are volunteers, as are all CAP members. Many are housewives, an occupation that presents special advantages because the ladies are usually able to monitor their assigned frequencies during the day, when most male operators must be out earning a living.

One of these valuable ladies is Captain Evelyn Streff, operator of the Illinois Wing's primary control station, "Red Fox 8," and Director of Communications Training for the wing. A CAP member since 1951, Evelyn handles as many as

20 separate pieces of traffic every day between the 459 licensed CAP stations under her jurisdiction. In addition, she makes daily traffic checks with the Great Lakes Region's control station at Detroit, and occasional contacts with passing Air Force aircraft. In spite of the demands on her time made by three very active children and an electronics technician husband, she usually manages to keep her station in operation from 6:30 in the morning until 7 or $7: 30$ at night. In emergencies she has been known to operate the clock around.
How does she find the time?
"It's not always easy," Evelyn says. "But if you feel that the job you're doing is important enough, you'll find that you can make the time somehow."
Illinois, like most states, conducts a daily halfhour net for all stations who are able to check in during the daylight hours. Many operators, of course, are not ordinarily available during the day and must pass traffic before going to work in the morning or after returning home in the evening. Indeed, some regularly check in with the mobile stations in their cars on the way to and from work.

Among the most unusual CAP stations are those operated by Indians of the Navajo Reservation in Arizona. Since 1951, when a squadron was first established on the reservation, "the wind that speaks" has many times summoned the lifesaving assistance of planes of the Arizona Wing. Today, there are three CAP squadrons on the reservation, and 32 landing strips have been built.

Is the network growing?
"Yes, indeed," says Captain John W. Scott, USAF, Director of Communications at CAP's National Headquarters. "The network has grown steadily, both in numbers and in quality. In 1955 alone, we added over 700 stations."
And what does the U. S. Air Force say about the CAP radio net?

In a message lauding CAP on its 15th Anniversary, General Nathan F. Twining, then USAF Chief of Staff, said:
"Well trained and well organized, the Civil Air Patrol provides immediate aid and assistance to the private citizen and to the nation in time of emergency . . . a radio network of thousands of CAP stations which stand ready for duty . . . has earned our deep respect for its work in flood and hurricane disaster . ."
And now, how about you? Got a quiet evening coming up soon? Drag the old short-wave receiver down off the shelf, hook up an antenna and start tuning the dial.
You'll recognize CAP frequencies by the tactical call signs they use: You may even think you've accidentally stumbled into a zoo if you happen to tune in when the Badgers, the Black Hawks and the Red Dogs are all on the air at the same time. But whatever you hear, you'll know that the volunteer radiomen and women of the Civil Air Patrol are on the job, ready and willing to do their part when disaster strikes.

How to Get Three Speeds from

Flg. 1. The centoring disc for Victor 45 rpm records. The writor turned his dise from cold-rolled steel.

F YOU own a General Industries Model-DR dual-speed (78 and 33 rpm) phono motor which plays both standard discs and Columbia LP's, you can, by a simple operation, convert it to play in addition the new 45 rpm RCA-Victor discs. An inspection of the motor (Dwg. 1) reveals that the 78 rpm part of the motor shaft is a removable aluminum collar held by a spline type set-screw. When set-screw is loosened and collar removed you will find the motor shaft measures about .3115 in. and gives turntable a speed of about 58 rpm . Pack cotton around motor shaft to keep metal shavings out of motor bearings, and while motor is running, file shaft down to about .263 in. or just enough to give exactly 45 rpm . (Dwg. 2). Now the table speed can be shifted from 45 to 33 rpm instead of from 78 to 33 as formerly and the aluminum collar can be put back

Fig. 3. The 78 rpm aluminum collar has been removed by loosening spline set-screw. Poncll points to part of motor shaft that has been filed down to .263 in . or just enough to give exactly 45 rpm . Alumlnum collar can be put back for 78 rpm .
on the motor shaft to play 78 rpm discs.
Use a new or clean file to file shaft to 45 rpm . The motor shaft turns in a counter clockwise direction; move the file against the direction of turn. Take a little at a time off the shaft and test for speed each time to prevent obtaining a turntable speed below 45 rpm . Turn centering disc on a lathe from cold-rolled steel, fiber, plastic, or even hardwood (Dwg. 3).

Removing Enamel Wire Insulation

- To remove enamel insulation on magnet and hook-up wire quickly and cleanly, wrap a piece of sandpaper around the wire and give a twisting, rotary motion.-E. L. Burner.

Seven and one-half pounds light, this compat record player plats 33. 45, and 78 rpm . records loud (if you like) and clear

Midget Record Player

Holes for volume and tone controls are $3 / 8-\mathrm{in}$. dia. These controls should be midget types such as Mallory, CTS, or Stackpole to fit the chassis apron. When controls with $1 / 4-i n$. mounting bushings are used, attach the chassis to the $1 / 4 \times 91 / 2 \times 11 / 8 \mathrm{in}$. hardboard motor board with $\%$ machine screws and nuts. If controls have $3 / 8$-in. or longer threaded bushings, use the control nuts to secure the chassis to the motor board.

Figure 4 shows the locations of mounting holes. The phono-motor opening is for a three-speed General Instrument model with 8 -in. turntable. If a different type motor is used, line up the turntable post at the exact point indicated in Fig. 4 and cut the opening in accordance with the manufacturer's template.

To insure proper record tracking and minimum needle pressure, use a pickup arm designed for microgroove records. The Shure \#92U or Astatic \#510-LT4AG pickups are inexpensive allspeed types furnished with osmium tipped .002 needles. For best

THOMAS A. BLANCHARD

WEIGHING just $71 / 2 \mathrm{lbs}$., this electric phonograph plays all records from ordinary 78 's to 7 -in. 45 's and 12 -in. LP's. Its compact three-tube amplifier employs a triode input, pentode output and a half-wave vacuum tube rectifier, giving more volume than the average small speaker can handle. (The 4 -in., round PM speaker shown in Fig. 6 is adequate for this volume, but for even finer tone quality use a 4×6-in. oval PM speaker.) Variable tone control-a feature not found on many larger phonos -is provided, and five individual components have been eliminated from the resistance coupled amplifier by employing a Centralab PC-71 triode couplate, a ceramic printed circuit about half the size of a postage stamp containing three capacitors and two resistors.

Construction of the amplifier is detailed in Figs. 2 and 3. The chassis may be aluminum, copper or steel; socket holes are $5 / 8$-in. dia.

RADIO-TV EXPERIMENTER
quality and maximum record life use a longplay, sapphire-tipped needle, size .001 , in the pickup for LP's and 45's. Ordinary 78 rpm records play best with a .003 osmium or sapphire-tipped needle.

Since swivel mounting bushings on pickup arms vary, $3 / 8-$ in. or $1 / 2-\mathrm{in}$. is indicated in Fig. 4 as hole size for the pickup arm. The speaker louver may be slotted, drilled or cut out and fitted with metallic grille cloth.

motor eotaro

Bottom view of completely assembled motor board with ampli-
fier, pickup arm, speaker and threespeed motor in place.

MATERIALS LIST MIOGET RECORD PLAYER

Amt. Description

$131 / 2 \times 41 / 2^{\prime \prime}$ metal chass is
$3 \quad 7 \cdot$ pin miniature wafer or molded sockets 2500 ohm output transformer (50L6 type) $4^{\prime \prime}$ round or $4 \times 6^{\prime \prime}$ oval PM Speaker 6^{\prime} line cord and plup
$.01 \mathrm{mf} ., 200 \mathrm{w} . \mathrm{v}$. plastic tubular capacitors
.1 mf., 200 w.v. plastic tubular capacitor
30.50 mf , dual electrolytic capacitor

Centralab PC. 71 couplate (or Erie equiv.)
$4.7 \mathrm{meg} ., 1 / 2$-watt resistor
222,000 ohm 1/2.watt resisfor (220K)
2200 ohm 1 -watt resistor
22 ohm l-watt resistor
100 ohm 10 -watt wire-wound resistor (ICA type 48)
10.5 meg. midget volume control-switch, plus push-on or set-screw knob
1250,000 ohm midget tone control (250K), plus push-on or set-screw knob
$11 / 4 \times 91 / 2 \times 117 / 8^{\prime \prime}$ hardboard
$21 / 8 \times 10 / 2 \times 121 / 2 \prime$ " hard board
$89^{\prime \prime}$ of $1 / 4 \times 31 / 8^{\prime \prime}$ plywood
$11^{\prime \prime}$ of $\%_{8}^{\prime \prime}$ sq. softwood
1 Astatic \#510-LT•4AG, or Shure \#92U allspeed pickup arm
1 General Instrument 3-speed motor with 8-in. turntable
Miscellaneous hardware

With wiring completed and all component parts in place on the motor board, test the record player by supporting the motor board on four Ixl-in. wood posts, 3 -in. long, and playing a record. If there is hum from the amplifier, run a wire from the grounding lug on the motor frame to the amplifier chassis. If, with the volume control fully advanced, there is a tendency to howl, ground the bushing of the pickup arm.

Construction of the carrying case is detailed in Fig. 5. Brads are used for assembly and plas-
tic, leather-grained fabric is glued to the outside of the case. Hardware (latch, hinges and handle) is inexpensive and available at hardware stores or luggage shops. Use "slip-pin" hinges (the kind you find on typewriter and tape recorder cases) so that the cover can be removed when 12 -in. LP's are played.

Four \#8, 11/2-in. binding-head screws secure the completely assembled motor board (Fig. 6) to the base of the carrying case, screwing into the corner posts.

Explore many other possible sources of trouble belore you investigate the wiring under the chassis.
more serious trouble exists, you can justifiably take your receiver to a radio serviceman for repairs.

Examine Line Cord

People have called radio servicemen to their homes an astonishingly large number of times simply because the line cord plug came out of the wall outlet. Therefore, direct your attention to this plug first. Be sure it fits snugly in the outlet. Examine its wire connections at the terminal screws. Make sure that power does exist at the wall outlet, by plugging a floor or table lamp into that outlet.

Breaks in the line cord itself are also frequent. These can usually be detected by bending the entire length of the cord through your fingers. If the insulation on the cord is damaged in any way, the entire cord should be re-

THERE are still far too few radio servicemen available to handle all the work they are called upon to do. Most radio owners yell for help the first time any little thing goes wrong, and if the neighborhood service man cannot come at once, the householder is deprived of the use of his radio, perhaps for days.

A surprisingly large percentage of these jobs involve simple troubles that can readily be repaired by the home craftsman.

By making these minor repairs yourself you can insure uninterrupted use of your radio-and the work itself is fascinating.

These instructions can profitably serve as a guide for checking a great many of the simple and obvious troubles which can occur in radio sets and can be repaired with ordinary shop tools. Once you have checked a receiver for these simple defects and have proved to yourself that some
placed. Once insulation begins wearing, it will deteriorate rapidly along the entire length, and taping of damaged portions is not advisable. The chassis must be removed from the cabinet in order to replace the cord, and the connections at the receiver end of the cord must be soldered. This is a simple job for anyone who knows how to use a soldering iron.

Plug Position Is Critical

With the receiver turned on and tuned to a station, try reversing the position of the plug in the wall outlet. There are a great many receiverhome situations in which the position of the plug is critical. If better reception is obtained in one position, mark both the plug and the outlet with crayon or other means to designate that position.

Defective tubes are undoubtedly the most common causes of troubles in radio receivers.

Fortunately, it is often possible to spot the bad tube by inspection or sense of touch. You can buy a new tube just as readily as could a radio serviceman, and can make the replacement with considerable financial saving to yourself and considerable saving of a trained radio man's time.

First of all, turn on the set and wait about one minute for tubes to warm up. Now inspect each tube in turn to see if a characteristic red glow of the filament is present. For metal tubes, for glass tubes which are hidden by other parts, and for glass tubes constructed in such a way that the filament cannot be seen, allow the set to warm up for about five minutes and then feel each tube in turn. Touch metal tubes lightly and carefully the first time, because some of them can get hot enough to give a painful burn. If one or two tubes in the receiver have no filament glow and remain cold, it is very likely that these tubes are defective.

In universal a.c.-d.c. receivers, the filaments of all the tubes are usually connected in series, like a string of Christmas tree lamps, so failure of one tube will cause them all to be cold. There is no convenient way to determine which tube is bad without instruments, so all of the tubes will have to be tested.

Have Tubes Tested

Testing of all tubes is a routine part of every radio service job. You are therefore fully justified in removing all the tubes from your set and taking them to a shop for testing. When tubes are brought to the shop loose (not in the set), they can be checked in a few minutes. A charge of five cents per tube for testing is fully justified, but most shops will test tubes free.

When removing tubes from a receiver for testing, be sure that you will be able to replace the tubes in the correct sockets. The safest plan involves making a rough layout of the top of the chassis, showing the position of every tube socket and type number of the tube which belongs in
each socket. This is desirable even though the sockets themselves are marked, because it is not uncommon to find discrepancies between tube and socket numbers. Sometimes a diagram of this type is attached to the inside of the receiyer cabinet by the manufacturer.

Tubes can usually be removed without trouble by pulling firmly upward while rocking gently from side to side. Top cap connections and metal shields should of course be removed before taking out the tube. Note on your diagram the tubes which have shields, because it is extremely important that the shields be put back on the tubes requiring them. Also, if there is any possibility that leads to top caps of tubes can become interchanged, identify these leads also on your diagram.

If the receiver trouble is noise or intermittent failure, you may be able to locate the cause before removing the tubes by tapping each tube in turn with your finger while the receiver is in operation. If the noise increases or if a change in receiver operation is noted when a particular tube is tapped, a new tube should be secured.

In general, tubes which differ only in the last letters of the type numbers are interchangeable. These last letters merely indicate some of the mechanical characteristics of the tubes:

M-Metal envelope and octal base
G-Glass envelope and octal base
GT-Short glass envelope and octal base
L-Used with letters G, M or T to indicate a locking base (loktal) tube
Thus, the 6A8 metal tube is ordinarily interchangeable with 6A8G and 6A8GT glass tubes. When metal tubes are not available for your use, glass equivalents are ordinarily given automatically by radio stores. It is usually necessary to use a shield with a glass equivalent; these cost about a dime each, and come with a special base strip which automatically grounds the shield to pin No. 1 on the tube base. Usually, however, exact replacement types will be available.

PILOT LAMP IDENTIFICATION CHART

Type No.	Bead Color	Bulb and Base	Volts	Amp.
40	Brown	Tubular Screw	6.8	. 15
41	White	Tubular Screw	2.5	. 50
42	Green	Tubular Screw	3.2	. 50
43	White	Tubular Bayonet	2.5	. 50
44	Blue	Tubular Bayonet	6.8	. 25
45	Green	Tubular Bayonet	3.2	. 50
46	Blue	Tubular Screw	. 6.8	. 25
47	Brown	Tubular Bayonet	6-8	. 15
48	Pink	Tubular Screw	. 2.0	. 06
49	Pink	Tubular Bayonet	2.0	. 06
49A	White	Tubular Bayonet	2.1	. 12

Type	Bead
No.	Color
50	White
51	White
55	White
292	White
$292 A$	White

Bulb and Base		Volts	Amp.
Small Globular	Screw....	6.8	.20
Small Globular	Bayonet..	6.8	.20
Large Globular Bayonet.	6.8	.40	
Tubular Sarew	\ldots.	2.9	.17
Tubular Bayonet	2.9	.17

Type 40R is exactly the same as Type 47. Type 49A may nol be obtainable, but can be replaced with Type 49.

Types 43.44 and 46 are used in tuntng meters, where replacement with the correct type ls particularly important. Be sure the right type is chosen.

Since tube types are constantly being modified and improved, and new types are constantly being added to the list of those available, for older radios especially there are quite a few cases in which other tube types will give equally satisfactory results. A list of these interchangeable tubes accompanies this article.

Pilot Lamp Replacements

Pilot lamps ordinarily serve the dual purpose of illuminating the tuning dial and indicating when the receiver is turned on. In larger receivers additional lamps are used for other indicating functions. Burned-out pilot lamps are readily replaced.
In most cases it will be entirely sufficient to remove the defective lamp and take it to the radio shop or hardware store, asking for a duplicate lamp. If you order by mail, however, and if there are no legible markings on the old lamp, you can determine the type number of any pilot lamp for ordering purposes with the aid of the accompanying pilot lamp chart.
If a pilot lamp burns out frequently, use a lamp having, a higher voltage rating. The light will be dimmer but probably still adequate.
Pilot lamps in universal receivers should be replaced as soon as possible because they are often connected in parallel with a portion of the voltage-dropping resistor or a portion of the rectifier tube filament. Failure of the pilot lamp sends excessive current through the other path, and this may cause failure of the resistor or rectifier tube.

Hunt for Loose Connections

It is not unusual for a radio serviceman to charge as much as five dollars for resoldering a single loose connection, because it takes a corresponding amount of his time to locate that connection before he can repair it. Here are suggestions for finding this particular trouble yourself.
Starting on top of the chassis, wiggle each exposed lead vigorously with your fingers or a stick of wood. Tap each part and terminal with the stick of wood. Check the antenna system in the same manner, paying particular attention to indoor antennas which run around the room and may make infermittent contact with metal objects in the room. Wiggle all plugs accessible from the outside of the receiver. All this is done, of course, while the receiver is turned on.
If noise occurs or there is a change in receiver operation when a particular part, terminal or wire is moved, concentrate on that location until you find the exact defect. Remember that vibrations can be transmitted through large parts and through the chassis, so the first point at which you produce noise may not be the defect. The trouble can easily be traced, however, by tapping more carefully so as to disturb as few other parts as possible.
If no defect is found outside the chassis, turn off the receiver and remove the chassis from its
cabinet. Now, with the chassis upside down, and with the loudspeaker connected, turn on the receiver and proceed to tap or otherwise move each part, terminal and wire under the chassis.
Caution: When working with a universal receiver, there will sometimes be one line cord plug position in which the chassis of the receiver is hot with respect to ground. The use of a wood stick for tapping purposes is particularly advisable here unless you have some means for determining which plug position connects the chassis to the grounded side of the power line.

Sometimes a trouble will develop only after a receiver has been in operation for ten or fifteen minutes. Here the bad connection will be caused by heat given off during operation of the set. With the chassis removed from the cabinet, free circulation of air will prevent parts from reaching normal operating temperatures and the set will work satisfactorily. The trouble can be "forced" in these cases by directing an electric heater at the underside of the chassis. Once heat has caused the trouble to develop, you can hunt for the bad connection as just described.

Replace Noisy Controls

If operation of the volume control, tone control or any other continuously variable control causes loud crackling noises in the loudspeaker,

RADIO TUBE INTERCHANGEABILITY CHART

Note: When a tube is made with several different envelopes all using the same base. it is listed only once in this chart. Therefore, dlaregard suttix lettors like G. GT, GT/G, ete., when looking up tubes unless the same type of tube is listed with difforent suffixes.

Type No.	Interchangeable with 623	$\text { Type } \begin{aligned} & \text { No. } \\ & 25 \times 6 . \end{aligned}$	$\begin{aligned} & \text { Interchange. } \\ & \text { able } \begin{array}{l} \text { Fith } \\ 2526 \end{array} \end{aligned}$
2A3\%	2A3	2526.	${ }_{25 \times 6}$
2×2	2Y2, 879	37	76
2 Y 2	2X2, 879	40	018
SE1.	1A1	4025	4523/4025
ST4.	SU4	43 MG .	25A6GT/G
SU4.	${ }^{514} 5$	44	39/44
SW4.	5Y3G, 524	45A	
SY3G.	5W4, 5Z4	56A/56AS	76
523.	83 V	57A/57AS	77
SZ4.	SY3G. 5W4	58A/58AS	78
6RB6G.	6N6G		36
6AF6G	6AD6G	65.	39/44
6B6G.	6Q7G	67	37
6 C 5.	615	68	38
$6 \mathrm{C6}$.	77		37
6D6.	78	77	$6 \mathrm{C6}$
6 G 5.	6U5/6GS	78	6D6
615.	6C5	$83 V$	573
$6 \mathrm{6S5}$.	6AB5/6N5		624
606.	${ }^{6 T 7}$	84MG.	84/624
$6 T 5$. $6 T 7$.	6U5/6G5	$\begin{array}{r} 86 . \\ 117 L 7 . \end{array}$	- 117 M 7
677. 605.	6U5/6G5	${ }^{11747} 17$.	: $\begin{array}{r}117 \mathrm{M7} \\ 117 \mathrm{~L}\end{array}$
6 US .	625	150	50
6x5.	6W5	171/171A	718
1月4.	1845	182A	71A
1 A 4 P	1A4T	182 B	483
184.	184T	183	483
184P.	184 T	551.	33/51
1 l LG.	1 ESG	585.	50
1D5GP.	1E5G	586.	50
IDSGT.	1E5G	879	2×2
1F7G	1F7GH	951.	1847
1F7GV.	1F7GH	1232.	. 7G7/1232
623.	18	1852.	6AC7/1852
624.	84	1853.	6AE7/1853
1287.	. 14A7/1287	PZ.	47
1423.	1223	PZH.	2A5

that control is defective and should be replaced. It is not ordinarily practical to repair these controls. Get new ones.
Before removing the old control, draw a picture diagram showing all connections to the terminals of the control, so that you cannot possibly make any mistakes when connecting the new control. Remember that a little care taken while troubleshooting can save you much time and effort-and needless expense.
When ordering a new control, it is essential to give as much as possible of the following information:

1. The make of the receiver. This is usually printed on the front panel.
2. The model number of the receiver. This will be found printed on the rear of the chassis or on a label attached to the inside of the cabinet. It is best to copy all numbers which you find, exactly as they appear on the set. Admittedly, there will be times when no numbers whatsoever can be found.
3. Name of defective part, such as volume control, tone control, etc.
4. Electrical value of part, if known.
5. Manufacturer's part number, if known.
6. A list of all tubes used in the receiver. (This is particularly important if you are unable to find the model number.)
Practically all receivers bear a notation to the effect that the set was manufactured under an RCA license. This definitely does not mean that you have an RCA set unless confirmed by other markings.
Noisy switches can oftentimes be repaired by taking them apart and cleaning the contácts with carbon tetrachloride or other cleaning fluid, then bending the movable contact arm to provide increased contact pressure. Careful inspection will usually reveal how to correct the trouble.

Loudspeaker Troubles

The various possible troubles which can occur in loudspeakers will usually reveal themselves by their own peculiar sounds or by complete absence of sound. The output transformer, which is usually mounted on the loudspeaker, is perhaps the commonest trouble in this category. An open primary wire is the usual defect, and blocks all signals. You can therefore suspect the output transformer when no program sounds are heard but there is the normal faint hum coming from the loudspeaker. Preliminary confirmation of the trouble can be made by removing and replacing a tube while the receiver is in operation; this should produce a click or thud in the loudspeaker if thè output transformer is good, but no sound if the primary is open. Try this test for several tubes, one at a time, but not on the rectifier tube. Of course, continuity of the output transformer primary winding can be checked as a positive test if you have an ohmmeter.

The chief problem in replacing an output transformer is securing the correct new part. An exact duplicate part can sometimes be secured
by giving all the data specified for ordering volume controls, but radio men today usually prefer to secure a universal output transformer, designed to fit in a large number of sets. About all you need to give when ordering a universal output is the type number of the tube in the output stage of the receiver (if this stage has two identical tubes, be sure to indicate it). A universal unit will have a number of taps on the secondary winding, and instructions for making correct connections will invariably accompany the transformer. In the absence of instructions, however, simply connect the voice coil leads to the two terminals which give maximum volume and fidelity. The voltage at these leads is very low, so you can hold the leads in your hands while hunting for the best terminals.
A rattling sound which is particularly noticeable on low or bass notes can be caused by looseness of the cone around its outer edges. This trouble is cured simply by regluing the cone to the frame of the loudspeaker with loudspeaker cone cement or household glue.

Simple Noise Test

Another cause for raspiness is an off-center voice coil, which rubs against the metal pole pieces of the loudspeaker. In most loudspeakers the voice coil can be recentered by loosening the adjusting screws (there may be only a single screw at the center of the cone, or there may be three screws anchoring the spider outside the cone), and placing quarter-inch strips of a calling card between the voice coil and the center pole and tightening the screws again. Four strips spaced equally around the coil are usually sufficient. Use the thickest card which will go into the space without forcing.

Loose spider screws can themselves cause rattling sounds. Dirt in the space surrounding the voice coil can cause raspiness.

To determine whether noise is originating inside or outside your receiver, turn on the receiver, make sure the noise condition exists, then short together the antenna and the ground terminals with a screwdriver. If this clears up the noise, you know that the trouble is either due to an antenna system defect or is due to noise interference being picked up by the antenna system. If shorting has no effect on the noise, you know that the trouble is either in the receiver or is due to noise signals coming in over the power line, trouble not easily removed.

A humming sound heard at all times, even when the loudspeaker is disconnected, can usually be traced to vibrating laminations in the power transformer of an a.c. receiver. First try tightening the mounting bolts of the transformer. If this does not reduce the hum sufficiently, drive a few triangular glazier's brads between the laminations, or simply drive in enough ordinary nails or brads to stop the vibration. This will not affect the performance of the transformer.
In servicing your receiver at home, make haste slowly and think before you tinker.

Put it on the panel, connect it to a power source and you're through forever wasting time and losing temper jerry. rigging dropping resistors to get the test voltage you want.

EXPERIMENTER'S Power Supply

By W. F. GEPHART

A
VERSATILE, variable voltage, utility power supply is an essential piece of equipment for every electronic experimenter's test panel. The unit shown in Fig. 1 provides a wide variety of controlled voltages and it can be constructed of ordinary components, many of which can be found in the shop junk box, or at surplus stores. It is versatile in that any one of a number of different tube types can be used in the unit without the necessity of re-wiring, and, in many cases, a sub-par tube will work quite satisfactorily in it. This power supply provides the following voltages:

1) high voltage, variable between 100 and 450 v. d-c, at up to 200 ma .
2) medium voltage, variable between 40 and $450 \mathrm{v} . \mathrm{d}-\mathrm{c}$, at up to 100 ma .
3) d-c filament voltages, continuously variable from 1 to 3 v ., at up to 2 amp .
4) a-c filament voltages of $6.3,12.6,25,35$ and 50 v ., at up to 2 amps .
5) d-c bias voltage, variable from 0 to 25 v ., at up to 30 ma .

FRONT PANEL DIMENSIONS-USE TERMINAL HOLES, $\frac{3}{3}^{\prime \prime}$ OIA. FOR FIGER SHOULDER WASHERS $9 \times 18 \times 12^{\prime \prime}$ CABINET ICA 38311 HOLES MARKEO "A" $\frac{1^{\circ}}{2}$ ALL OTHERS $\frac{3^{\prime}}{8}$

SCHEMATIC
Notos on Schematic-Filament Voltage Selector Switch S3: Pos. 1-1.25 volt dec, Pos. 2-1.4 volt dec. Pos. 32.0 volt d-c, Pos. 4-2.8 volt d-c, Pos. 5-6.3 volt a-c, Pos. 6-12.6 volt a-c, Pos. $7-25$ volts a.e, Pos. 8-35 volts acc. Pos. 9-50 volte a-c; High Voltage Range Switch S4: closed, "High." open, "Low": Meter \#i Range Switch S6: Pos. 1- 600 v, Pos. 2- 300 v, Pos. 3- 60 v, Pos. 4-30 v blas, Pos. $5-3$ v def flament, Pos. 6-60 ma, Pos. 7 -30 ma; Moter \#2 Range Switch S7: Pos. 1-500 v, Pos. 2-250 v, Pos. 3- 25 v bias, Pos. 4-250 ma, Pos. 5100 ma . Pos. 6-50 ma, Pos. 7-25 ma.
multaneously. If the $a-c$ filament voltage required is 6.3 v ., then both this and a d-c filament voltage can be obtained at the same time.
The high-voltage supply is a conventional fullwave rectifier supply, fed into a two-section filter -which can, through S4 (see Fig. 3), be changed from choke to condenser input to give higher voltage (with less regulation) when required. The output from the filter goes to two separate degenerative type variable control circuits.
This type of control system can best be under-
stood by thinking of the control tubes (V2 through V5) as resistances which can be varied by varying the bias on the tubes. When operating at zero bias, the voltage drop across a tube is small, and maximum output voltage appears across the load resistance in the cathode circuit (R4 or R7). When the bias is high, the tube acts as a high resistance, and the voltage drop across the tube is much higher than that across the load resistance in the cathode circuit. The ratio of these two voltage drops is dependent upon the

excess of the current carrying capacity of the transformers and chokes in the circuit. Type 6L6's need not be used, however; any of the following tubes can be used in their stead (maximum current per tube in ma. is given in parentheses following the tube's number): 6AC7 (50); 6B4-C: (100); 686 (60); 6F6 (50); 6G6 (20); 6K6 (40); 6L6 (100); 6V6 (60); 6W6 (50); 6Y6 (70).

On the other variable control system, the filter section output is connected to the single control tube (V5, Fig. 2) through control switch S5 which provides . high or low range (the low range bping secured through dropping (esistor R6), and an Off position. In the Off position of S5, the current being drawn through the multi-tube control system can be measured on meter M2, the voltage simultaneously on meter M1.

The filament-bias supply consists of three separate transformers with outputs wired in varying series arrangements through the filament selector switch S3. For d-c output, these voltages are fed through S3 into a selenium rectifier circuit with a rheostat-controlled output to compensate for the varying load which might be drawn from the supply (one or more tubes in either series or parallel) causing different voltage drops within the filtering system.

The bias supply is varied by changing the input into the rectifier-filter system so as to present a more constant loading to the external circuit under test. A dual section filter is used, with high impedance chokes. Load resistor R5 can be omitted from the circuit if an external resistance is always used in the circuit under test. R5 can

MATERIALS LIST-EXPERIMENTER'S POWER SUPPLY	
R1-2500 ohm, 4 watt potentiometer	L2, L3-20 Hy at 15 ma . (Stancor C-1515)
R2-20 ohm, 25 watt, wire wound	L4, L5-2' Hy at 250 ma . (Stancor C-2991)
R3- $60 \mathrm{ohm}, 100$ watt rheostat	S1, S2. S4-SPST togole switches
R4, R7-70K 4 watt potentiometer	S3-4 pole, 9 position rotary switches (Mal-
R5-5 megohm, 1/2 watt	lory 1341L)
R6-2500 ohm, 5 watt wire wound R8-12.000 ohm, 1 watt, 1%	S5- 2 pole, 3 position rotary switeh (wallory 3223J)
R9- 60,000 ohm, 1 watt. 1%	. S6, 57-3 pole, 7 position rotary switches (Mallory 1331L)
R10-120,000 ohm, 1 watt, 1%	V1-5U4G
R11-1200 ohm, 1 watt, 1%	V2, V3, V4, V5-6L6 (see text)
R13-3.20 ohm, 1%	PLI, PL2-6.3 V. pilot lights
R14-6.000 ohm, 1 watt, 1%	F1-1/4 amp. Littelfuse
R15-50,000 ohm, 1 watt, 1%	$\mathrm{F}-2$ amp. Litteliuse
R16-100.000 ohm, 1 watt, 1\%	SR2-20 ma. selenium rectifier
R17-. 275 ohm, 1\%	M1, M2-5 ma. meter (see text)
R19-1.71 ohm, 1%	T1-Sec: 6.3 v . at $2 \mathrm{~A}: 25 \mathrm{v}$. at 1 amp.
R20-4.36 ohm, 1%	T2-Sec: 18 v ., tapped at 6 v . and 12 v . ("Tri-Volt" Bell transformer)
R21-5,000 ohm, 1 watt, 1\%	T3-Sec: 6.3 v. at 1.2 amp . (Merit P-3074)
C1. C2-50 mf., 50 v., electrolytic	T4-Ste: 400-0-400 v. at $200 \mathrm{ma} . .5 \mathrm{5}$ v. at 3
C3, C4-15 mf., 30 v., electrolytic	1 amp., 6.3 v . at 5 amp . (Thordarson
C5-30 mf., 30 v., electrolytic	24R07)
C6, C7. C8-8 mf., 500 v., electrolytic	Chassis and Cabinet (see text)
L1-2 Hy at 200 ma . (Stancor C-2325)	Knohs, binding posts, pilot light holders, etc.

brated to read what the voltage will be with the meters out of the circuit, since it was contemplated that no current would be drawn from the bias supply and that the meters would be used for other purposes during tests.
Parts placement on the chassis is of little importance except that heavy components should be placed near the edge of the chassis for better support. The shunts for the meters are mounted on a plastic plate which is then mounted on the meter terminals. This saves space, wiring, and
also be reduced to a value as low as .5 megohm (which will cause a higher "bleeder" current, thus reducing the capacity of the supply) if it is felt that little, if any current will be drawn from the bias supply.

The values for resistors R8 through R21 will depend upon the internal resistance of the meters M1 and M2 which you use. The values given in the Materials List for R8 through R21 were calculated for the meters that we used. Formulas for determining these values are:

$$
\mathrm{R}=\frac{1000 \times \mathrm{E}}{\mathrm{I}},
$$

where R is the site of the unknown series resistor in ohms, E is the upper limit of the desired voltage range, and I is the full scale deflection (in ma.) of the meter; and

$$
R=\frac{i \times r}{I} \text {, where } R \text { is the size of the unknown }
$$ shunt resistor in ohms, i is the full scale deflection (in ma.) of the meter, r is the resistance of the meter, and I is the upper limit of the desired current range (in ma.).

Construction. The circuit components required for this power supply are inexpensive and readily available; parts mentioned by manufacturer's name and model numbers in the Materials List are ideally suited for use with the unit, but substitutions of equivalent parts and values can and should be made at will to keep the unit's cost as low as possible. For example, a single 100 -ohm, 25 -watt rheostat would be the ideal component to use for d-c filament control, but we had R2 and R3 on hand and they work quite satisfactcrily. Filament transformer Tl is a surplus item, but any 25 v . transformer could have been used, and the second 6.3 volt supply furnished either by paralleling T3 or providing an additional 6.3 volt transformer, depending on current needs. The 5 ma. meters used were also on hand, but 1 ma . meters would have been better suited to the applications. Since the 5 ma. meters draw appreciable current, the bias scales were cali-
simplifies meter removal if such removal should prove necessary.
The chassis and panel layout are planned together and, whenever possible, parts on the chassis should be placed reasonably close to related controls on the panel. We used a $3 \times 11 \times 17$ in. chassis in a $9 \times 12 \times 18-\mathrm{in}$. cabinet, but you may want to use units of slightly different size depending upon what you have available in your parts box.
Panel arrangements are often overlooked when designing equipment. Symmetrical arrangements (Fig. 2) not only look well, but when wellplanned are also logical; that is, controls related to each other (or to meters, jacks, etc.) are placed together. Controls which are used the most should have the greatest clearance for fingers, and all controls should be located reasonably clear of the high voltage terminals. With large posts mounted, wire according to the schematic and pictorial wiring diagrams (Figs. 3, 4, 5 and 6) and your unit's ready for use.
The use of decal letters, dials and symbols (as in Fig. 1) not only improve the appearance of the panel, but also make the usage simpler and more efficient.

Use TV Lead-in for Radio Lead-in

- Odd pieces of twin TV lead-in or transmission lines may be used as shown in photo at right for window lead-in cables for radios. Attach a couple of clips such as used on dry batteries to the two ends of wire of the twin line to complete the job. - H. L.

Down to an absolute minimum, the cabinet dimensions for this set are a minute $11 / 4 \times 3$ inches

Transistor Wrist Radio Uses Earphone "Speaker"

 clip and solder (Fig. 2). Make small loops with tweezers in the transistor B and C pigtail leads; these loops form tiny lugs to which the diode is soldered to B and one of the earphone leads to C .When soldering the transistor and diode, be sure to push a wad of wet cleansing tissue against the wires so heat from the soldering iron is not transmitted into these delicate parts.

IN ORDER to make this little wrist radio easy-to-construct, no printed circuits, special jeweler-made parts or other gimmicks are used. A hearing aid phone installed in the case serves as a speaker of limited range (see Fig. 1), In localities where reception is weak, the removable hearing aid phone may be taken out of the set and used as an earphone. The set dimensions for this self-contained, transistor radio are the absolute minimum for a tuneable set which uses parts available from any radio supply house.
The radio case is a transparent $3 / 4 \mathrm{x}$ $11 / 4 \times 3 \mathrm{in}$. plastic trinket box. Cut a $11 / 8 \times 27 / 8$ in. plastic chassis from thin Bakelite or fiber to make a snug fit inside the case. This plastic plate provides a rigid mounting for the transistor and battery clips and allows you to complete all wiring before mounting the finished radio in the case.
Form the battery clips from small tin strips bent to L-shape as in Fig. 2A.

MATERIALS LIST-TRANSISTOR WRIST RADIO

Amt.

- Description

1 plastic box. $3 / 4 \times 11 / 4 \times 3$ in.
Bakelite chassis olate, $1 / 16 \mathrm{in}$. thick $\times 1 / 8 \times 27 / 8$ in.
1 Ferrite adjustable screw antenna coil (Tuner Ferri-Loopstick 51C036)
100 mmf . ceramic capacitor (to tune 1500 to 880 kc .)

OR
1270 mmf . ceramic capacitor (to tune 880 to 550 kc .)
1 Diode detector (any permanium peneral purpose type)
1 Transistor (any PNP inexpensive type)
1 Mapnetic type earphone (1500 to 10.000 ohms. Do not confuse with crystal phones of similar appearance) Miscellaneous hardware-see text

Touching head of machine screw (see arrow) greatly increases the volume of this miniature set.
The tuner is a ferrite slug-tuned loop antenna coil, such as is used for regular superhet radios. Unsolder the outside coil lead from its terminal lug and unwind the coil until 21 -inches of wire have been removed. At this point, carefully scrape away the cotton insulation, form a tiny locp or twist for the tap, then rewind the wire and resolder to the lug. The small loop is the tap point for connecting the cathode (or banded) end of the diode detector. Some loops are now provided with a blank lug. This lug may be used to terminate the tap lead, thus insuring a rigid terminal point.

A fixed ceramic capacitor connected across the loop determines the set's tuning range. To tune from 1500 to about 880 kc ., use a 100 mmf . capacitor. Use a 270 mmf . capacitor to tune from 880 to 550 kc . Attach capacitor to coil before mounting coil in plastic case, as it might be burned by iron working in close quarters. Also connect the antenna and ground leads to the coil lugs at this time.

Note that the tuning coil is mounted in the end of the plastic box (Fig. 3). A snap-mount clip on the end of the coil causes the coil to lock in place when pushed into the $5 / 6-\mathrm{in}$. hole drilled in the end of the case. Always push from the end of the coil and never apply pressure to the coil lugs as they will break off.

A standard miniature magnetic earphone (crystal types won't work) is inserted through a $3 / 8-\mathrm{in}$. hole drilled through both the Bakelite chassis and plastic case. (You can set aside the plug-in cord provided with the earset for future use.) Make the connection to the earphone "speaker" with small escutcheon pins or brads (your local hardware store has them). If pins are too long, clip off excess metal with wire cutters. Do not solder leads to pins while in phone.
To make the larger holes in the case, for the earphone and tuning coil, first drill small holes through the plastic; then enlarge these with a burring reamer. These inexpensive hand reamers are one of the few tools which will drill a smooth, even hole in plastic, to the exact size required. The $1 / 8$ through $1 / 2-\mathrm{in}$. size, available from hardware stores, is ideal for radio work.

Drill a $1 / 16$-in. hole through the side of the plastic case for the flexible antenna lead. Attach a small battery clip to the antenna wire for signal pickup. When using the radio, you can attach this clip to the finger stop of your dial phone (Fig. 1) or any metal part of a rural phone will do, too. If the direct connection with a phone overloads the set and makes for very broad tuning, attach the clip to a pie tin or piece of aluminum cooking foil and set the phone on the metal plate. A water pipe, lamp fixture or the like may also make a good antenna.
In some localities, if the signal is weak, you can increase it 100% by using the human body as a counterpoise antenna (ground). Note that a binding head machine screw (see arrow in Fig. 3) has been attached to the side of the case. A lead connects from this screw to the groundside lug of the tuning coil. Touching this screw with your thumb or finger will make the volume zoom. You'll find, in fact, that the pressure applied to the screw will vary the volume. So relaxing the tension of your touch will retard the volume without turning dials.
To secure the earphone in the case without damaging it, while still allowing it to be easily removed, we merely cemented a sponge rubber grommet inside the cover of the plastic case (Fig. 3). Of course, a piece of thick felt will also serve as a suitable retainer.

This radio operates on a single $11 / 2$ volt transistor hearing aid battery costing about 15%. Any cell measuring $7 / 18$ in. diameter and $11 / 8 \mathrm{in}$. long will do. Typical batteries available from any local hearing aid, dealer are Eveready \#E340E, Zenith N , and Ray-O-Vac \#716. No switch is provided... nor needed. A strip of adhesive or Scotch cellophane tape is wound around the cell and joined with a tab. To remove the cell, merely pull on the tape tab, and battery comes out easily.-Thomas A. Blanchard.

Battery Charger tor Photob:Flash and Flashlighth Cells

PHOTOGRAPHERS who use flash bulbs will find they can prolong the life of battery cells by giving them a boost with this charger after about every 30 to 40 shots. Also of value to those who use flashlights constantly, this charger can accommodate three sizes of cells-singly or in combination. Naturally, a single cell is recharged more quickly, or in about one to three minutes, while with three cells in the clips it may take about three times as long.
To build, first fit milliammeter and wire-wound potentiometer, used as

Charging on the dry cell sechargor broughi this cell from its .74 reading on the tester up to the 8 new-cell reading.

 a variable resistance, to the front panel of a gray. finished utility cabinet (Figs. 2 and 3). Some meters use small screws and nuts around the front rim but the one illustrated has a U supporting clip with insulating washers that fit over meter terminals for clamping. File a section out of the lower rim of the cabinet (Fig. 2) for potentiometer clearance. Next, attach the filament transformer to the cabinet bottom with screws and nuts and bring the line cord in through a rubber grommet. Insert the S. P. switch and fix it with the locknut (Fig. 3). Attach rubber feet to the underside of the cabinet with 4-40 screws and nuts.Make a terminal board from $3 / 16-\mathrm{in}$. clear plastic or Bakelite and also cell terminals of brass or phosphor bronze strips and clips (Fig. 4) which attach to the board with $4-40 \times 3 / 16-\mathrm{in}$. screws in

Variable resistor has been mounted to the front cover and moter is being installed. Note curve filed in case for clearance.
tapped holes. These short screws will not go entirely through the plastic to ground to the metal box. Attach a plastic-insulated stranded \#24 gage wire lead at an end screw at each strip assembly, then drill holes to pass the wires into the cabinet (Fig. 3).

The two yellow terminals usually found on rectifiers are for a-c or input connections from the transformer secondary, the red one is the positive d-c terminal and the two bridged together with a soldered jumper is the negative d-c terminal (Figs. 5 and 6). Solder the wires to the resistance control, leaving one blank, then mount the rectifier to the right side of the cabinet with a $4-40$ center screw and nut. Solder all connections except those at the meter. If meter terminals are not marked plus and minus, it may be necessary to interchange them later if the meter reads down scale. Drill 24 holes in the back cover of cabinet for ventilation (Fig. 7). Attach covers with screws supplied.
After all connections are made, plug in the unit and check for d -c polarity at the cell terminals. A voltmeter with marked plus and minus terminals can be used or two leads equipped with spring clips can be attached to the clips and their ends then placed in strong salt water. Bubbles will appear around the negative lead which should go to the back strip. The other lead goes to the

handbook on pages 142-144. With thistester, a good or new cell will register about .8 on the meter. The cell we tested showed .74 (Fig. 8A). After being charged for two minutes at 120 ma . the reading was 8 (Fig. 8B). Along with two others similarly recharged, this cell has since been used intermittently for about three months and is still going strong with periodic recharging.

To illustrate that voltage is increased, we charged a cell showing but 1.27 on a
positive strip at the front. Mark the strips for quick identification. Always place cells in the clips with the positive terminals toward the front.
Although a recharged cell need not be tested after charging, you can use a low-reading d-c voltmeter, having a fairly high resistance, to test it. Or, you can use the tester described in this

voltmeter (Fig. 9A) for five minutes at 120 ma . A second meter reading showed 1.40 (Fig. 9B). Another short boost brought the voltage up to 1.45 (Fig. 9C). While low cells can often be boosted, the voltage usually drops quickly and they are good only for emergency use. Best results are obtained by recharging for a minute

Wirlng is complete and ventliated back is about to be installed.

MATERIALS LIST-DRY CELL CHARGER

Amt Description

1 aluminum utility cabinel, hammertone oray finish, ICA 29811

1. $5 \times 4 \times 3^{n}$ with removable front and back covers

1 round panel meter, 0.150 d-c milliamperes Shurite \#5308
150 ohm, 4 waft wire-wound potentiometer IRC Type WPK-50 or Clarostat 3 watt Type 58-50
1 filament transformep, 117 v 60 cy . primary, 6.3 v at 1.2 amp . secondary. Stancor P.6134, Merit P. 3074 or any simitar types, such as Triad F-14X.
1 S.P.S.T. togole switch 3 amp. 125v
1 rubber grommet for $5 / 16^{\prime \prime}$ hole
6 ft flat rubber line cord $\# 18$ conductors
1 attachment plug cap
rubber mounting feet or knobs $3 / 8{ }^{\prime \prime}$ O.D. Use type designed for machine screws, such as Allied Radio $44 N 763$
1 pointer type knob for $1 / 4^{\prime \prime}$ shaft
10 ohm I watt carbon resistor
Above obtainable from electronic supply houses or Lafayette Radio, $165-08$ Liberty Ave., Jamaica 33, N. Y., or Allied Radio, 100 N. Western Ave., Chicago 80, III.
1 Sarkes Tarzian full-wave bridge type selenium rectifier, 4-1" $\times 2^{\prime \prime}$ plates. 150 ma. D.C. 25v rating. Model 154B. (Local supply house or Durrell Distributors, 222 Mystic Ave., Medford, Mass., \$1.95 P.P.)
1 piece clear plastic or Bakelite $1 / 16 \times 4 \times 3^{\prime \prime}$ (scrap from old electrical apparatus or from Forest Products Co., Inc., 131 Portland St., Cambridge, Mass. \$0.75 P.P. paid in U.S.)
1 piece hard brass or phosphor bronze about .015-.017 $\times 3.8 \mathrm{x}$ approx. 12". For strips and cell contact clips (metal supply houses or shops using such material). Misc. screws, nuts, hookup wire, etc.
or less at 75 (size Cells) -100 (D cells) ma. and for penlight cells, one to three minutes at $30-40$ ma. after each prolonged cell use. This usually can be repeated several times before chemical decomposition causes cells to become useless.

The first fester readiag on the cell being recharged in Fig. 1 was .74, above, left. Right, after the recharging, the reading jumped to 8 , normal for a new cell.

Good battery cells register about 1.5 to 1.55 on a voltmeter of high resistance, such as 20,000 per volt multimeter. When voltage reads 1.4 or $s a$ charge to bring back to normal. If a flashlight is involved boost cells when the light is not as bright as it should be. If recharging does not appreciably brighten the light, the cells probably should be discarded.

In general, the charging time and current rate will depend on cell size and condition, smaller cells requiring a lower charging rate and shorter time. If there is noticeable warmth during charging, reduce rate and/or time, as internal heating is harmful to the cell.-Harold P. Strand.

Cell first recorded 1.27, was recharged, then showed 1.4. Atter a second recharging period, the reading was 1.45 . Usually, when a cell takes this much recharging, It will nof hold the charge for very logg.

Transistorized Electronic Megaphone
 Highly portable, self-contained

 P.A. with a $500-\mathrm{ft}$. plus range

By HAROLD P. STRAND

amplification. Transistors employed in an amplifier circuit allow the use of small, light batteries contained in an attached housing back of the horn (Fig. 2). It has a volume control, although raising or lowering the voice level usually serves to control the output volume. A push-button switch on the pistol grip handle is controlled by the forefinger. Holding the switch closed turns the power on from the $221 / 2$ volt battery and the 3 volt bias battery. Releasing the switch eliminates power drain when megaphone is not in use.

Since the in-use maximum current drain at the loudest volume level is about 40 50 milliamperes from the $22^{1 / 2}$, volt battery, and about 2.5 from the 3 volt battery (used as

Fig. 2A (Left) Cover removed to show housing components (detailed in Figs. 3 and 4). Note small microphone mounted in cover plate at left, with its leads plugged into amplifier chassis. Fig. 2B (Right) Front of megaphone, showing how grille cloth mounted over wooden ring holding speaker presents neatly finished appearance.

WHETHER you skipper your own cabin cruiser, or are active in local civic groups which hold or sponsor 'sports events, public meetings or rallies, you'll find this highly portable, self-contained "public address" system mighty handy for long distance hollering. Come to think of it, this megaphone might be just what your wife would like to have for summoning the children for supper. It will "broadcast" intelligible speech from 500 to 600 feet, depending on weather conditions.
This unit is designed for medium level voice

MATERIALS LIST-ELECTRONIC MEGAPHONE

Electronic parts listed below were supplied by Lafayette Radio, BAKELITE—supplied by Forest Products Co., 131 Portland Street,

165-08 Liberty Ave., Jamaica 33. N. Y.
$16^{\prime \prime}$ P.M. speaker. 2:15 oz., magnet. 0xford 6EVS 3.2 ohm voice coil or Utah equivalent, with 4-6 watts rating
1 Shure microphone, MC-11 controlled reluctance type, $1^{\prime \prime}$ dia meter
3 transistor sockets MS-275
3 G. E.' 2 N 44 transistors
1 RCA type phono Jack and plup
$10^{\prime \prime}$ shieided cable, small diameter (ahout $1 / 8^{\prime \prime}$ O.D.)
$10,000 \mathrm{ohm}$ miniature volume control VE. 34
Burgess XX 15 B battery, $221 / 2$ volt
Burgess \#2 penlight cells
three-prong plug to fit $\times \times 15$ battery
AR-109 driver transformer
AR-138 output transformer
Argonne 8 mfd 15 volt capacitor, $15 v$
$47 \mathrm{ohm} 1 / 2$ watt resistor
22,000 ohm $1 / 2$ watt resistor
1200 olm $1 / 2$ watt resistor
\# 6 solder lug or more if needed for ground conn. (see below) Bakelite terminal strip 7 terminals, two grounded, Jones 55-C
2 Bakelite terminal strips 2 terminals, one orounded, Jones 51-A (Note: You can use 5 terminals on first and 1 terminal on second strip mentioned above, all lugs to be insulated and use solder lugs under chassis strews for ground connections)
1 miniature knob for $1 / \mathrm{s}^{\prime \prime}$ shaft MS-185
1 piece plastit grille eloth about $7 \times 7^{\prime \prime}$
D.P.S.T. push leaf switch, Switchcraft 1004 or Mallory 1014 speaker cone made of half-hard .032 shert alum., riveted or with lock seam, front end rolled bead, $123 / 4^{\prime \prime}$ long, $91 / 2^{\prime \prime} 0.0$. large end, $4^{\prime \prime} 0.0$. small end. Robert Towne, 49 Abbott Avenue, Everett, Mass., will make them for our readers for $\$ 7.25$ P.P. in U.S.. express or money order

Cambridge, Mass. for $\$ 3.00$ P.P. in U.S., express or money order.
1 pc black paper base $1 / 4 \times 5 \times 5^{\prime \prime}$. Cut and dress to tightly fit inside housing
1 pe black paper base $1 / 8 \times 5 \times 5^{\prime \prime}$. Cut and dress to fit on out. side front of housing
2 ocs linen base natural finish $1 / 8 \times 5 \times 21 / 4^{\prime \prime}$ (handle sides)
1 DC paper base natural finish tubino $11 / 2^{\prime \prime} 0 . D$., $1 / 10^{\prime \prime}$ wall, $17 / s^{\prime \prime}$ long (mouthpiece)
MISCELLANEOUS METAL AND WOOD STOCK (Try local metalworking and cabint shops)
1 pe aluminum about $.050 \times 3 \times 53 / 4^{\prime \prime}$ (chassis)
2 DC aluminum half-hard alloy or material that can be bent but has reasonable rigidity, $1 / 8^{\prime \prime} \times 13 / 10^{\prime \prime} \times$ about $113 / 4^{\prime \prime}$ (handle frame)
1 pc aluminum half-hard alloy about $.040-.045 \times 31 / 16 \times 181 / 2^{\prime \prime}$ (housing) can also use soft sheet steel about . $034^{\prime \prime}$
1 DC aluminum half-hard alloy $3 / 32$ or $1 / 8^{\prime \prime} \times 5 / 8^{\prime \prime} \times$ about $17^{\prime \prime}$. Bend to form speaker U bracket suppart
1 pe hard brass, or phosphor bronze about $.010 \times 23 / 8 \times 7 / \mathrm{s}^{\prime \prime}$ (clip for bias battery)
1 pe dry maple or birch $3 / 4 \times 41 / 2 \times 41 / 2^{\prime \prime}$. Turn to tapered disc to fit tiohtly in small end of cone
1 pc hardwood plywood such as birch $1 / 4 \times 7 \times 7^{\prime \prime}$. Cut-out ring to hold speaker in cone
Mise. hook-up wire, serews, nuts, paint. Pliobond cement, ete. Note-Pure aluminum bends too easily for our purpose. What is commonly called half-hard can be formed or bent but is strong and ripid. Some trade numbers are 3003 H14 half-hard, 11 H14 halfbard and 5052 H 34 quarter-hard. Any similar type could be used where a test shows it workable for bending but as rigid as soft steel. Lightness of aluminum makes it ideal for keeping megaphone light. Usually supply houses do not sell small quantities so it has to be picked up in shops using this stock.

MOUNTING FOOT TO CHASSIS
Terminal strips 55-C and 51-A have grounded lugs as shown above for connection of leads going to ground. If strips with all lugs insulated are used, simply use solder lugs. under chassis screws for ground connections, as at AR-109 transformer feet.
bias in the emitter of the driver stage), battery life should be quite high.

The Shure controlledreluctance type microphone has an output level of -71 db below

one volt per microbar, and an impedance of 1000 ohms. It is only one inch in diameter. It is mounted in a Bakelite tube, which also serves as the mouthpiece (Fig. 2).

The 6 in . permanent maghet type speaker with its 2.15 ounce Alnico magnet is fixed part way down in the cone as in Fig. 2. The three G.E. 2N44 transistors in a push-pull circuit which power
the unit, have much higher collector power dissipation than ordinary transistor radio types, such as the 2 N 107 . In addition, the AR-138 output transformer, used can handle more power than the AR-119 or 120 as usually used in radios. Thus you get a surprising volume from this miniature equipment.

Parts for this megaphone should cost you from $\$ 35$ to $\$ 40$, which is only about two-thirds the cost of a typical commercial unit.

Building the Amplifier. Bend up the chassis from sheet aluminum and drill openings for components as in Fig. 3. Figs. 6 and 7 show both sides of this chassis with all parts mounted. Note terminal strip at one end (Fig. 6) for leads to battery, speaker and switch. The input from the mike is at a phono jack in the top of the chassis and the volume control is placed in a side opening, where its shaft will project through the housing for an outside control with a knob.

Use a short piece of shielded wire from volume control to base of first transistor, since this is a sensitive input lead and grounding the shield prevents or minimizes possible hum. Place two small terminal strips in the chassis as in Fig. 5, to provide tie points for soldering leads.

You won't need much hook-up wire in this circuit as the transformers come equipped with leads that are carried to the proper points and soldered. Use only rosin-core solder

6
Underside of amplifier chassis, with parts mounted and wired according to Figs. 4 and 5. and apply enough heat from a small iron or soldering gun to fully flow the solder. In making connections to terminal strips, make sure the lugs grounded to the chassis are used for ground connections only, as indicated in Fig. 5. If you use other types of terminals by the way, where all lugs are insulated, provide small solder lugs under chassis screws for ground connections.

Next lay out pattern for the amplifier housing (Fig. 8) on sheet aluminum or soft sheet steel (about .034 in.). Housing can be bent over a piece of angle iron in the vise (Fig. 9). Make sure the box is square.

After bending up the housing, bring its two edges together and rivet a piece of $1 / 8 \mathrm{in}$. thick aluminum placed inside over the joint (Fig. 10). Drill holes for the short $\% / 22$ in. brass

Forming the ampllfler's sheet metal housing, using the rounded edge of a plece of angle fron held in the vise.

Edges of shaped housing are brought together and riveted to an aluminum plate.
rivets, and head the rivets over on the inside in countersunk holes so that the rivets will come flush.
To form the frame for the pistol grip handle

After fastening switch through its hole in handle with locknuts, attach handle frame to amplifier housing. Note that housing has been finished with primer, then black enamel lightly rubbed with steel wool.
which is of aluminum stock about $3 / 32$ to $1 / 8 \mathrm{in}$. thick and soft enough to be bent, lay out the pattern (Fig. 11A) on paper with $1 / 2 \mathrm{in}$. squares. Then, carefully bend the aluminum stock to its proper shape over various forming pieces held in the vise.

Install the switch in its hole with locknuts and attach the handle frame to the housing, using two 8-32 machine screws in tholes drilled and tapped into the housing and inside plate (Fig. 12).
Because the aluminum cone could be difficult for an amateur to make we recommend you purchase one as indicated in the materials list, or have your local tinsmith make one up for you (Fig. 1). These commercial ones have a neat rolled bead at the front end which helps to stiffen the cone.

To assemble the speaker, you'll need a hardwood disc which fits tightly in the 4 in . end of the cone (Fig. 14). Turn this from maple in any woodturning lathe, giving it a taper to properly fit and come flush with the end. Insert it from the large end of the cone, tapping it down into place. Fasten it with four $3 / 8$ or $1 / 2$ in. \# 7 flathead brass wood screws, inserted through the aluminum and into the wood disc in holes spaced and drilled equally around the circumference.

Pliobond cement on the disc edges will further insure its remaining in place.
Figure 14 shows how a piece of $1 / 4 \mathrm{in}$. thick black Bakelite, which was carefully cut and fitted to the inside dimensions of the housing as in Fig. 8E, is attached to the maple disc in the end of the cone, using four $3 / 4 \mathrm{in}$. \#9 roundhead wood screws. Holes for these screws must also be drilled in the maple block so you won't split the wood. Next fit the Bakelite panel into the amplifier housing until it is flush with the edge, and use 4-40 machine screws in drilled and tapped holes to secure it.
Make sure when doing this
fitting the switch button is on side of housing nearest speaker cone, and tabs on housing are on the end of housing away from cone. When drilling and tapping Bakelite in its edge, by the way, clamp the Bakelite in a vise so the tap will not tend to split the material, since it splits rather easily in end grain. You can drill the required holes in the metal with

Soldering connections to switch terminals in handie of megaphone-see Fig. 5.

Bakelite in place, but only allow drill enough of a depression in the Bakelite to mark where to drill for tapping. Use a \#33 drill through the metal and then change to a \#43 drill for making the holes in the piece of Bakelite. Then use a $4-40$ tap in each drilled hole.

Before fitting the amplifier to the Bakelite piece you have already attached to the cone, first drill a $\# 29$ drill hole through the Bakelite and also the wood disc in the cone just off the center (Fig. 8E), for the speaker wires. Pass the speaker leads through this hole and then fit the amplifier chassis against the Bakelite piece and secure it (Figs. 2A and 3), making sure the control knob shaft is allowed to project through the hole for it drilled in the side of the housing. The chassis should also be so located in the housing so that the $221 / 2$ volt XX15 battery will fit between the chassis and the housing (Fig. 2A) when wedged with a folded piece of cardboard.

The switch contact wires are brought through their hole (Fig. 8C) in bottom of the case, and connected as shown in Fig. 5 and Fig. 15. Solder a plug to the two leads that go to the battery and make a knot in one of them which will easily identify the plus lead for you. Examination of the way the three-prong plug fits in the battery quickly shows which terminal of the plug is plus.

Nounting the Speaker. Figure 14 shows how the speaker is held part way down in the cone by mounting it to a support that is bent up from any light metal, as in Fig. 14A. Since the size of the cone and the speaker size may vary a little, the exact length of the bracket is not given.

Installing 221/2 volt B-battery in amplifier housing. See Fig. 2A for battery position in housing.

CLIP HOLDER FOR BIAS BATTERY MATERIALOIO" HARD BRASS OR PHOSPHOR BRONZE

You can now connect the $221 / 2$ volt battery and place it between the chassis and the housing (Fig. 18) using folded cardboard to wedge it tightly in place. You can also place the transistors in their sockets now.

Mounting the Mike. The microphone mounts in a rubber strip which in turn is cemented into a $11 / 2 \mathrm{in}$. diameter Bakelite tubing mouthpiece (Fig. 2A, 14A and C, and 19). The mouthpiece then fits tightly in a hole made in the front Bakelite housing cover, using a fly cutter in the drill press. Before installing mike in the mouthpiece tube, connect a 6 in . length of shielded flexible wire to the terminals and a phonoplug to the other end (Fig. 2A and 14C). Make up the strip into which the mike will mount from the type of sponge rubber used to seal car trunks and doors; it is sold in auto supply stores. This rubber should be about $1 / 4 \mathrm{in}$. thick, $1 / 2 \mathrm{in}$. wide and long enough to be formed around the mike and have its ends meet. Apply Pliobond cement to outside edge of mike and one surface of the rubber. Then, after a few seconds wrap the piece around the mike, tie with string and let dry for about an hour. Then untie string, apply cement to outside surface of rubber, and press the assembly of mike and rubber in mouthpiece tube until about flush with the end (Fig. 20).

Attach the 3 -volt bias battery, consisting of two penlight cells in series, to the chassis under a spring clip bent up from thin hard brass or phosphor bronze (Fig. 18A). The leads were soldered to the battery terminals (Fig. 5). To enclose the megaphone handle, make up Bakelite sides as shown in Fig. 11C, and attach to handle frame with screws and Pliobond cement.
Using the Megqphone. If you test the megaphone indoors in a small room, you may find a whistle will develop when you press the pushbutton and try to talk. This is because sound bounces from walls and enters the microphone to

Microphone mounted in insulating rubber ring, which in turn is fitted into Bakelite tubing mouthpiece.

Mouthpiece with mike and its rubber ring inserted, mounted to Bakelite panel.
set up a series of oscillations-a common occurrence where a high-gain amplifier, a mike and a speaker are in close proximity to each other. When used outdoors or in large areas, however, this sound has less chance to rebound and there should be little tendency to whistle.
You can use the volume control setting to keep the gain down enough to eliminate whistle when testing indoors. Or, if you want to cut down any tendencies to whistle, line the space inside the cone back of the speaker, and the interior of the box housing the amplifier, with felt. Also cement a piece of felt to the inside surface of the cover. I used a standard dress goods or fabric store type of felt and Permatite Liquid Adhesive R-6229 (from Sears).
For longer battery life, you can place a second XX15 battery in the housing and connect it in parallel with the other one. Simply splice on two leads from the original two battery wires and connect a plug to them, making connections so that the batteries will be plus to plus and minus to minus or parallel. You'll get the same $221 / 2$ volts but double the current capacity. The second battery can be taped in place where convenient in the roomy housing.

When using the megaphone, talk close to the mike, even placing the lips directly up to the mouthpiece. This will give maximum volume and also help to prevent stray sounds from entering to cause undesirable oscillations. Avoid taking deep breaths through the mouth while it is close to the mike but rather breathe through the nose. With a little practice, you'll be able to transmit intelligible speech under good atmospheric conditions for distances of 500 to 600 feet, depending on the direction and force of the wind.

Draftsman's Tape Holds Tight

- Draftsman's tape makes an excellent "third hand" to hold electronic components together during assembly or soldering. Due to its high insulation, the tape can be left on permanently, or can be peeled off easily.-J. A. McRoberts.

Iun with a One-Tube ELECTRONIC ORGAN

THIS novel electronic organ employs a simple tuned oscillator circuit, much like that employed in elaborate electronic instruments. However, where the real organ uses many individual oscillators as well as mechanical devices for its effects, the little organ described here limits its scope to a simple one-tube circuit. Yet with its simplicity and limitations, this organ produces musical effects ranging from tubato fife-like tones. In the middle ranges, it sounds much like any reed type organ. The organ keyboard consists of 20 chromatic notes. These may be played in a choice of four ranges from treble to bass. The tap-switch on the keyboard functions much like the "stops" on a conventional organ.
The heart of the instrument is the oscillator. A small metal chassis $33 / 4$ in. long, $31 / 4 \mathrm{in}$. wide, and $11 / 2$ in. high is made to general design shown in illustrations. However, oscillator can be wired up on a wooden base, if desired. Our pictorial wiring plans show oscillator details so that assembly may be left to individual cboice. The oscillator employs a type 117L7/M7GT tube. This tube is really two tubes in one glass envelope: a power pentode and a half-wave rectifier. And since it has a 117 -volt filament, no resistor or transformer is needed to lower "heater" voltage. The 117L7/M7GT contributes much to the circuit's simplicity.

A 6 -post terminal strip on front of chassis provides means for connecting PM speaker, keyboard, and range control. Since the oscillator is a complete assembly in itself, overall construc-

Bottom view of oscillator-amplifiér which is heart of $0: 5 \mathrm{gn}$. Lower right, $2 \rho \mathrm{mf}$. condenser; center, . 05 mit. condenser, with tube socket below it. Tube and input transformer are located on top of chassis.
tion of organ is greatly simplified. After obtaining components given in materials list, wire according to picture plan.

With the oscillator completed, test it by connecting a .00035 mfd . fixed mica condenser across terminals \#1 and 2. Then attach a $470,000 \mathrm{ohm}, 1 / 2$ watt resistor across terminals \#3 and 4. Finally attach a PM speaker (through a matching PM output transformer) to terminals \#5 and 6. Plug cbrd into power line and allow oscillator to warm up. After warming up, oscillator should produce a high whistle. If not, check wiring carefully. If everything is in order, reverse primary connections of $3: 1$ ratio audio input transformer. This will place primary and secondary polarity in proper relation and unit will then oscillate.
Now if the 470,000 ohm resistor is replaced with a somewhat higher value, a different tone will be heard. Therefore, since each change in grid return resistance produces a different tone, a string of resistors, each with a "tuned" value, will reproduce all tones in the musical scale. The keyboard, therefore, is actually nothing but a series of switches-each black and white key closing the circuit along a series resistance network, and causing a different resistance to be placed between grid and ground of oscillator tube.

To save time, you can use well-seasoned white pine Xylophone-keyboard (see drawings) in place of piano-type keyboard. Use only dry material unless you want organ to be out of tune or worse! Arrange 20 nickled or brass thumbtacks in the manner shown. Under each tack secure resistor leads. It is very important that all connections are solid! Inspect tacks to be sure they are not tarnish-proofed with clear lacquer. If so, soak them in acetone to remove this film. Be certain that keyboard resistors are exactly the values given in Table A, and that no open or poor connections exist anywhere between R1 and R20.
With Xylophone keyboard finished, solder length of wire to free end of R20. Connect this lead to terminal \#3 on oscillator. Run another length of flexible insulated wire from terminal \#4 to a radio test probe. With the .00035 mfd . condenser still across terminals \#1 and 2 , you are ready to go. Touch each tack head with the probe tip and you get an electronically-produced note corresponding to those given on the keyboard diagram. Now shut off oscillator and change .00035 mfd . condenser to a larger value: $.0006, .001$ or .01 mfd . The .01 mfd . will produce very low tones; .0006 and .001 mid-ranges.
Now with a working knowledge of the gadget, you can build up a regular type keyboard, if you wish, entirely from scratch, or get a head-start by purchasing a 20 -note toy piano for about $\$ 3.00$. In the latter case, remove bells or chimes and revise key actions into individual switches in the following manner. There is usually enough room inside the average toy piano to include
oscillator and a small PM speaker, making the organ completely self contained. You'll find that key actions in most toy pianos, as well as real instruments, wørk on knife-edge pivot system (see "exploded" plan of keyboard). Base of keyboard consists of two pieces of well-seasoned $1 / 4 \mathrm{in}$. plywood.
Each of these pieces measures 12 in . long by $43 / 4 \mathrm{in}$. wide. Take one panel and rip-saw into two pieces making cut $23 / 4 \mathrm{in}$. from the edge to give you one panel $23 / 4 \times 12 \mathrm{in}$. and another $2 \times$ 12 in . With brads and glue, attach $23 / 4 \times 12 \mathrm{in}$. panel to $12 \times 43 / 4 \mathrm{in}$. sub-base. The knife-edge pivot strip is placed against edge of $23 / 4$ in. panel, and sandwiched-in by the remaining strip of $12 \times 12 \mathrm{in}$. plywood which is also glued and nailed to sub-base.
The knife-edge strip is a 12 in . length of $3 / 8 \mathrm{in}$. steel band such as is used to secure shipping containers. If you can't secure one, use a 12 in . hacksaw blade or have a tinsmith cut a strip of 20 -gage sheet metal to $12 \times 3 / 8$ in. Next cut out keys to dimensions on a jig saw. Use as narrow a saw blade as possible to slot each key on the

TABLE A-ONE-TUBE ELECTRONIC ORGAN

No. Req'd.

Description

68,000 ohm, resistors * (R1, R2)
56.000 ohm , resistors (R3, R4, R5)
68.000 ohm , resistor (R6)

47,000 ohm, resistor (R7)
39,000 ohm, resistors (R8, R9. R10, R11)
33,000 ohm, resistors (R12. R13. R14)
27.000 ohm. resistors (R15, R16, R17)

22,000 ohm, resistors (R18. R19)
470,000 ohm. resistor (R20)
six-post terminal strip
.0003 mfd mica capacitor
.00005 mfd mica capacitor
.0006 mid mica capacitor
.001 mfd mica capacitor
:01 mid mica capacitor
5 position tap switch
pointer knob
.05 mfd 400 volt capacitor
1 3:1 audio input transformer (Stancor A.53)
1 tube sacket (octal)
117L7/M7GT tube
47,000 $\mathrm{ohm}, 1 / 2$ watt resisfor
$20 \mathrm{mfd}, 150$ volt, electrolytic capacitor
output transformer (Stancor A.3328)
$5^{\prime \prime}$ PM speaker
1 line cord and plug

* Keyboard resistors R1 through R20 should be standard values,
$1 / 2$ watt size and 5% (gold band) or 10% (silver band) aecuracy.

Console with aluminum cover removed. Note condensers and sone switch (A): position of contact bar (B). Keys slip under safety pin eprings. Depressing key causes pin to raise and contact bar.
underside to a depth of $1 / 10 \mathrm{in}$. Now arrange keys on base according to positions shown in photos. You'll find the individually-notched keys will ride on the steel edge in teeter-board fashion.

With all keys in place, draw a line across rear of base $5 / 10 \mathrm{in}$. in from edge. At center of each key position, make a centermark on parallel guide líne. Do this manually as plotting off fixed spaces will possibly result in key-springs falling in the wrong position. Obtain two cards of \#2 safety pins (20 pins) and with diagonal wirecutting pliers, clip off clasp from each. Now, at each of the 20 marks along previously plotted parallel line, drill a hole (slightly smaller than safety pin) through keyboard base. Now push

a spring through each hole. Bend projecting portion of pin on underside of base down (see cross-section view in plans). With all safety pin springs in place, raise each one up and slide proper key in place. When key is depressed, it will now spring back. Align and adjust each spring so that it falls in center of respective

Bottom of keyboard showing resistors R1 to R20 soldored to profecting ends of safety-pin springs.

key. Now turn keyboard over and wire in the 20 resistors as shown. Projecting portions of springs serve soldering lugs.

Finish the console with front, side and rear panels tacked and glued as shown. Now cut a strip of wood 12 in . long, $3 / 4 \mathrm{in}$. high, and $3 / 8$ in. thick for the contact bar. To the $3 / 8$ in. side fasten a strip of brass, aluminum, or tinplate with several brads. At a point where it won't interfere with the key action, solder length of insulated wire, or mount a soldering lug as shown. Set this bar, metal-faced side down, into the console. Position it as close to springs as possible, but without actually touching them. Now fasten

bar securely at each end of console with small wood screws. As each key is pressed, lever action causes individual spring to raise and contact the bar. This closes circuit and sounds that particular note. Springs may be individually adjusted by careful bending with flatnose pliers.

A metal cover consisting of a piece of light aluminum conceals the actions and provides a mounting for the 4 -position tap switch and mica capacitors which make up the range control. By notching end panels of console, cover front slips into these slots and requires only three small
screws across rear top edge to secure it.
Since this organ employs but a single oscillator, it is necessary to strike only one key at a time. The natural limitations of the circuit do not permit the playing of chords, but this is, at worst, only a slight shortcoming.

However, a little practice with the device will result in rapid fingering that is not possible with any instrument other than those of electronic nature. The novel effects gained by virtue of the electronic circuitry of this instrument greatly offset its shortcomings.

New Use for Old Knobs

- Use discarded radio knobs as feed-thru insulators in radio and electrical work. To mount them, remove set-screws and run a $1 / 4-\mathrm{in}$. drill all the way through the knobs. Pass a $1 / 4-\mathrm{in}$. brass or copper rod through the knobs and partition; press both knobs firmly against partition and tighten set-screws (see A). Solder the wires into small holes drilled through the ends of the rod. In an alternate method (B), use a $1 / 4-20 \mathrm{rh}$

brass machine screw, washers, hexagon nuts and soldering lugs instead of the smooth rod. A $1 / 4$-in. dia. threaded rod can be used in place of the machine screw, with a pair of hexagon nuts on both ends.-Arthur Trauffer.

Connecting and Mounting Flashlight Cells

- To make connections to flashlight cells and hold batteries securely, remove paper wrapper around battery; mount battery on block of wood with conduit bracket and a couple of $r h$ wood screws. Bend large soldering lug at an angle and mount

in front of battery so it contacts center electrode. Use one of conduit bracket mounting screws, and screw holding soldering lug, for binding
posts when making connections to battery. Place washer under each of these screws. Two batteries can be mounted in line for a series connection, if desired.-Arthur Trauffer.

Auto Anfenna Bayonet Connector

- When your auto radio begins to give intermittent reception, check the lead-in to antenna connection. If road vibration has caused the antenna to shake free of contact with the lead-in

bayonet tip, slip a short length of compression spring over the tip. Allow spring to extend beyond tip enough to make constant contact with the antenna when plugged in its socket.-K. H.

Thimble-Size Insulators

- Plastic thimbles sold at notions counters or variety stores (especially those made of polystyrene) can be used to make neat-looking, low-loss feedthru insulators Drillahole
 through metal panel, cabinet or partition which will give ample clearance for brass screw or rod, to avoid shorts or losses, and assemble with thimbles and nuts as shown in drawing. Since heat will melt or soften the plastic thimbles, make solder connections to solder lugs before bolting onto thimbles.

Testing TV and Radio Tubes

TV dealers will usually test tubes free. Most stores are equipped with a high-grade general purpase tube tenter, slmilar to the large one in use by the dealer at left. Some dealers also have grid circuit testers (like the small one in the lid of the large tester) for checking critical tubes for grid emission.
burns out. It will fail to operate properly when the cathode becomes worn out and fails to emit enough electrons. And sometimes structural defects inside the tube may cause one of the grids to come in contact with another grid, the plate or the cathode, causing a short circuit and rendering the tube inoperative. If the glass envelope breaks, the tube will also fail to operate.

A perfect vacuum is never achieved in the process of making tubes and some gas will always remain inside the tube. A gassy tube is one in which an excessive amount of gas remains; such a tube is often indicated by a blue or purple glow inside the envelope. Finally, a very prevalent

DEFECTIVE tubes cause more than 90% of radio and television set troubles. Bürnedout tubes cause a set to quit working; weak tubes cause poor performance (and under some conditions can stop the set from working). Yet the average person does nothing about having his radio or TV set's tubes tested until the set quits completely-and then is surprised when the serviceman says that several tubes should be replaced.

The electron tube is a reliable device. The jet bomber and the guided missile-to name only two of many similarly indebted mechanisms-depend upon it, so it has to be reliable. Even so, a vacuum tube has a limited life, limited, because of the physical limitations of its individual components.

The typical tube contains a heater which is surrounded by another element known as a cathode. (Some tubes have a single element which combines the functions of both heater and cathode.) When an electric current flows through the heater, it heats the cathode and the cathode emits electrons. These electrons flow to a metal cylinder known as the plate, attracted by the positive charge on the plate. To reach the plate (in every type of tube except diodes which have only plate and cathode elements), the electrons flow through a spiral wire assembly known as a grid; some tubes have more than one grid. Grids affect the flow of electrons because of changes on them, allowing either more or fewer electrons to reach the plate. All of these elements are enclosed in a vacuum inside a glass envelope (sometimes a metal envelope is used instead of glass).

A tube will fail to operate entirely if the heater
defect which causes erratic operation of television sets and distortion in hi-fi systems is one called grid emission, a condition in which the grid or grids emit electrons as well as the cathode.
Several million tubes are replaced each year because some type of testing apparatus indicated that they were defective. The apparatus may be the radio or telvision set in which the tubes were in use or it may be an instrument known as a tube tester. Except for obvious structural breakage such as broken envelopes or shorted base pins, you cannot determine just by looking at a tube whether it is good or bad. You cannot, of course, see inside metal tubes, and usually you

TABLE A-Tube Tester Kits

1) SECO GCT-5 KITESTER has all the parts required to assemble and wire your own Grid Circuit Tester. Otherwise, identical to the SECO GCT-5. Available through electronics parts distributors. Price: $\$ 19.95$
2) HEATHKIT TC-2 tests most tube types for emission and shorts. Has illuminated roll chart listing tube test information. Provided ready to assemble and wire. Heath Company, Benton Harbor, Mich. Price: $\$ 29.50$
3) KNIGHT TUBE TESTER KIT checks for emission and shorts. Provided with roll chart. Ready to assemble and wire. Allied Radio Corp., 100 N. Western Ave., Chicago. Price: $\$ 29.75$
4) PRECISE IIIK tests for transconductance and emission. This is more elaborate tester for checking both tubes and transistors. Sold through electronics parts distributors. Price: $\$ 79.95$

The protessional service technician usually checks tubes by substituting new tubes for those he knows from experience to require most irequent replacement. He also tests certain tubes for grid emission with the grid circuit tester. Grid emission is a very frequent cause of TV ailments and is not readily detected with general-purpose lube testers.
cannot see inside glass-envelope tubes because of the silver or dark coating on the inside surface of the glass. (Incidentally, blackening or discoloration of the glass envelope does not necessarily indicate that there is anything wrong with a tube.)

Ordinary tubes have a rated life of 1000 hours. Many last much longer, some quit after a few minutes or a few hours of use. To insure your getting maximum performance out of your TV, radio or hi-fi set, its tubes should be tested at frequent intervals. You may tolerate and be unaware of substandard performance because tube deterioration may have been very gradual: when new tubes are installed, you may be surprised by the marked improvement. By waiting until your set quits completely, you are not getting all the performance that is built into it.

Getting Tubes Tested. The easiest and perhaps the best way to test tubes is to call a reliable radio or TV service shop and have a trained technician check the set and the tubes in your home. Sometimes the technician will bring along a large, bulky tube tester and check each tube individually. This takes time, however, and requires muscle, so the typical technician today carries spare tubes and a grid circuit tester which fits inside his tube caddy. If a set has quit entirely, he usually knows from past experience with the same type of set which tube has blown. Once that tube has been replaced, he observes the performance of the set and by substituting other new tubes for old ones and noting any improvement in set performance, determines which -if any-other tubes should be replaced.
The serviceman will next check certain tubes for grid emission and inter-element leakage with his grid circuit tester, usually finding two or three that may still perform satisfactorily but which-according to his grid circuit tester-have slight grid emission and thus can cause erratic
performance after extended operation. Tubes with excessive grid emission, of course, won't work at all in some applications.

Cheching Your Own. Instead of calling a technician to test tubes and check your set in your home, you can take the tubes to a service shop or TV store to have them checked. Testing them is easy. The hard part is getting them out of your set initially, and then replacing them in the correct sockets.

In the case of a TV set, first remove the back cover. Usually there is a printed diagram glued or stapled inside of the cabinet that indicates the type number and location of each tube.

To play it safe, number the tubes on this diagram and attach pieces of adhesive tape marked with matching numbers to each tube in the set. (Take the tape off when you replace tubes since some of them get very hot.)
Some tubes may be enclosed inside metal shields. These shields must be removed when the tubes are to be tested, and reinstalled when the tubes are replaced. And don't overlook tubes located inside a protective metal housing on the chassis of your set when you're pulling tubes for testing.

When the back cover of the set is removed, the power cord is also disconnected, or a safety switch is actuated so that the set cannot be

TABLE B-Typical Tube Testers

1) A.B.C. TESTER has three sockets for testing filaments of most tube types used in television sets, including picture tubes. If the indicator does not light, the tube is defective. If the lamp does light, however, the tube may or may not be good; further tests with a more complex tester should be made. Although this tester ddes not check anything but filaments, it can be a handy time saver for the do-it-yourself man. Omega Electronics, 670 N. Michigan Ave., Chicago. Geiger Engineering Corp., 3738 W. Lawrence Ave., Chicago 25. Price: $\$ 3.95$
2) SUPERIOR TC-55, a low-priced, general-purpose tube tester for the experimenter with a modest budget. Tests most commonly used tube types. Moss Electronic Distributing Co., 3849 10th Ave., New York 34, N. Y. Price: $\$ 26.95$
3) SECO GCT-5, a special type of tube tester for checking for grid emission and inter-element leakage. Finds grid defects usually missed by general-purpose tube testers. This type of tester is used in addition to a general-purpose tube tester and often by professionals to supplement tube-substitution test methods. Sold through most electronics parts distributors. Price: $\$ 29.95$
4) TRIPLETT 3412-A a general purpose tube tester which checks all modern tubes for shorts and emission. Sold through radio parts stores. Price: $\$ 77.91$
5) HICKOK 539A, a professional lab tube tester for the expert. More critical than most lower priced tube testers. Sold through electronics parts distributors. Price: $\$ 287.00$

Many super markets, service stationg, druggists and hardware stores have installed serve-yourself tube testers.
turned on. Service technicians sometimes use cheater cords to permit operation of the set with the back cover removed. Don't try it! The safety features built into your set are there for the purpose of protecting you from a dangerous shock.

Neither should you attempt to take out the picture tube for testing. You can easily break the glass and suffer serious injury. If you have doubts about the condition of the picture tube, call in a service technician. But remember, lack of a picture or a poor picture does not necessarily mean that the picture tube is defective.

Most electronics dealers and electronic service shops will test tubes without charge. Most will not try to sell you tubes unless you need them. If you should install new tubes, however, and then reinstall some of the old ones in their place and 'find that the set works just as well, don't jump to the conclusion that you have been gypped. In some TV set circuits even very weak tubes will work. In some other circuits, on the other hand, you may have to try two or more new tubes to find one which will operate satisfactorily.

Super markets, gas stations, hardware stores and drug stores are among the enterprising businass firms which have installed serve-yourself

TABLE C-TUBE TYPES WHICH SHOULD BE CHECKED FOR

 GRID EMISSION(as well as for shorts and electrical merit)

3AV6	6AB4	6BC8	648
3BA6	6AG5	60 B6	6×8
38C5	6AH6	6BE6	12AT7
3BE6	6AK5	6BH6	$12 \mathrm{AU6}$
3CB6	6AK6	6BH8	12AU7
3 CF 6	64 Mr	6BJ6	12AU7A
$3 \mathrm{CS6}$	6AN8	6BK7A	12AV7
4 BC 8	6AR5	6BK7GT	12AX7
4807A	6AS6	6B97AT	12AY7
$4 \mathrm{BZ7}$	6AS8	6BX7GT	12 AZ7
5AM8	6AU6	6 BY 6	$12 \mathrm{BA6}$
5AN8	$64 \cup 8$	6BZ6	12 BA 7
5 AS8	6AW8	$6 \mathrm{BZ7}$	12BD6
5BK7a	6BA6	6CF6	128E6
5 J 6	6 BA 7	6CG7	$12 \mathrm{BH7}$
508	6 BA 8	6CL6	12BH7A
	6BC5	$6 \sqrt{6}$	12827

tube testers. These testers are usually loaned by the wholesaler; the dealer provides floor space and receives a commission on the tubes he sells. Detailed instructions for use are posted at or adjacent to the tester.

Tube Testers for the Home Workshop. If you are sufficiently interested in electronics, you will want to buy the necessary equipment for tube testing at home (see Table A and Table B). Tube testers are advertised for sale for as little as $\$ 1.97$, but a really critical tube testet sells for as much as $\$ 695$. There should be a differencethere is.
So-called tube testers selling for under $\$ 5$ test only for open filaments. (An ohmmeter, though not so convenient to use, will make the same test.) Although an open tube filament is the most frequent cause of total failure of a radio or TV set, it is far from being the biggest cause of defective tubes.
In most table model radios (and in many late model television sets), the tubes are connected in series, in Christmas-tree light fashion. If one tube burns out, all or several other tubes will also fail to light, and in such a case an inexpensive tester can locate the one offending tube. But, in

TABLE D-Testing Tubes at Home Without a Tester

1) Obtain a supply of pretested spare tubes, at least ono of each type (preferably more) used in the set.
2) Assuming set does not work satisfactorily, turn the set on for 10 minutes to let it warm up.
3) Turn set off and remove back cover.
4) Feel each tube to see if it is warm. (Careful-some tubes get very hot.) If one tube is cold and the others are warm, replace this tube with a new one. (A cold tube may be burned out. In some sets the tubes are connected in series in Christmas-tree light fashion and all or several tubes may be cold even if only one is burned out.)
5) Replace back cover and try set. If it does not work, substitute a new tube for an old tube, one at a time, trying set each time. If a new tube does not do the trick, put the old tube back before replacing the next one.
6) Once the set is working, replace each tube, one at a time, to note any improvement in performance. Don't forget that the set must be turned off every time a tube is removed or installed.
7) Leave new tubes in place whenever improvement in performance is noted, even if slight. The overall improvement in performance when several tubes are replaced can be appreciable.
8) If a Grid Circuit Tester is available, test applicable types of tubes (see Table C) for grid emission. Some tubes which work OK now but fail to pass the grid test may cause serious, hard-to-find trouble after extended operation as tube gets hotter.
9) Throw away weak or defective tubes so that they won't be used again.
general, such a tester is not much better than no tester at all.

A kit of parts for building a tube tester that will check the electrical performance of a tube can be purchased for about $\$ 30$. Ready-made tube testers can be bought for a similar price. A more adequate tester, however, costs about $\$ 70$ in kit form and over $\$ 100$ assembled.

The cheaper testers are seldom as critical as the more expensive testers and may pass tubes as OK when they should be rejected. Some testers measure what is known as emission, or current flow through a tube; others-like the Hickok -measure transconductance; and some use plate conductance or some other term or form of measurement for indicating the degree of merit of a tube. (Transconductance is a technical term denoting the change in current in one tube element as caused by a change in voltage at another element.

The conventional tube tester has a meter scale with numbers, plus a red and green section to indicate Good or Bad. Also, most testers are equipped to test for shorts. Nearly all are rela-

A radio and television tube filament checker such as the one shown above will test TV picture tubes as well as ordinary vacuum tubes.
tively easy to operate if instructions are carefully followed.

Most tube testers do not check for grid emission, but a check of this condition is critical usually only with miniature tubes (see Table C). The professionals use a special tester for this test in addition to a general-purpose tube tester. Grid circuit testers such as the Seco GCT- 5 are available ready-made for about $\$ 30$, or for $\$ 20$ in kit form.

To test tubes yourself, test first for shorts. If the short indicator lamp flickers or glows, do NOT press the merit test button or the meter of the tester may be damaged. Tap the tube while testing for shorts to detect intermittent shorts.

If the tube passes the short test, then press the
merit test button and note the meter reading. If it is in the green, reduce the filament voltage to the next lowest value (for example, for a $6.3-$ volt tube, set filament at 5 volts). If the meter reading now drops into the red zone, this may mean that the tube is nearing the end of its useful life and should be replaced:

Having passed the short and merit tests, most tube types should next be checked for grid emission in a grid circuit tester. This is the acid test for miniature tubes. At one shop it was noted that 90% of the tubes which failed to pass the grid emission test, checked OK on a conventional, general-purpose tube tester. So, is it important to check for grid emission? TV technicians seem to think it is since by doing so they have been able to reduce callbacks drastically.

Poor picture contrast; grainy picture; twisting, pulling and bending; jitter and bounce; buzz and poor fringe area reception are among the hard-to-find troubles caused by grid emission. If a grid circuit tester is not available to you at home, take the tubes to a shop that does have one or substitute new tubes for old ones, one at a time, until the trouble clears up.

When no tube tester is available, tubes can be checked at home by the substitution method, installing one new tube at a time in the place of an old one and observing the picture or sound for change in performance (see Table D).

About Buying Tubes. A new tube is not necessarily a good tube. There are duds in any batch of new tubes. Sometimes, several tubes in a single batch may be below standard. Tube manufacturers turn out over $100,000,000$ radio and television receiver tubes each year. Tube prices are low and demand is great. In spite of stringent quality control methods, some bad tubes get by.

To play it safe, buy tubes of a known brand, RCA, Philco, Sylvania, Tung-Sol, General Electric, etc. Buy from a reputable dealer and beware of phoney bargains. Most retail dealers will sell tubes only at the suggested list price, and smalltown wholesalers often refuse to sell to anyone but legitimate dealers. (The wholesale price is about half of the suggested list price.)

Bargain tubes are often packaged in plain white cartons or with an unknown label. They may be rejects, seconds or just plain used tubes. Or they may be perfectly good surplus tubes. You have no certain way of knowing. Tube manufacturers use cartons bearing their own label or a private brand for tubes intended for the replacement market. When you buy new tubes have them tested then and there to make sure they are OK.

A new tube may not operate properly after a short period of use because it may have developed excessive grid emission which went undetected by a conventional, general-purpose tube tester: Or it may quit functioning due to some other cause after a few hours of use. If a tube gets through the first 200 hours of its life, however, it generally lasts a long time. Most new tubes will give long and satisfactory service.

. Fig. 2. Chassis provides ample room for using standard-size sin-gle-gang capacitor instead of the miniature type shown above. (With standard size, insulate rotor plates from chassis.)
Fig. 1. Trim oscillator is both wireless broadcaster and test in. strument for aligning.
of phono tip plugs at the same time to match the jacks. One phono plug connects to the phono pickup at the oscillator. The other tip is used for a shielded or unshielded output wire from the oscillator for testing and

THIS compact oscillator performs double duty as an efficient wireless record player and signal generator. Employing a miniature 35W4 rectifier and a miniature 12BA6 pentode in a grid-modulated Hartley-type oscillator circuit, the trim assembly shown in Fig. 1 measures only $6 \times 5 \times 4$ inches. A signal generator is a most useful tool when aligning a superheterodyne type receiver that is "out of whack."

The oscillator is built into a standard metal radio utility box (sold by all radio parts suppliers). These boxes are available in a variety of sizes-in black wrinkle steel or hammertone aluminum, which is a bit more expensive than steel. A plastic drawer pull from the dime store provides a neat carrying handle. To get started building the oscillator cut the chassis from 16 or 18-gage aluminum and cut the necessary component mounting holes as shown in Fig. 3. Bend down a $7 / 10 \mathrm{in}$., 90° fold along the front edge of the chassis for attaching to the front panel of the cabinet. The same screws which secure the chassis to cabinet also fasten the input and output jacks to the front panel. Instead of using two of the single round phono jacks, a double rectangular phono jack strip was cut in half. If you use the round single jacks, however, separate mounting holes and screws will be required. When purchasing the jacks, order a pair
aligning., Arrange the components on chassis as shown in Fig. 2 and pictorial wiring plan (Fig. 5). A can-type dual-electrolytic capacitor with a 40 and 20 mfd ., 150 w . v. rating mounts over the $11 / 8-\mathrm{in}$. dia: hole. The electrolytic capacitor should be of the insulated type. This unit resembles any other can-type electrolytic capacitor, except that it includes a black paper tube which insulates the can, plus a Bakelite mounting plate instead of the usual metal plate. Fig. 2 shows the capacitor with paper tube removed. The tube is not essential, but the Bakelite mounting plate is required to insure a shockless isolated ground circuit.

The oscillator coil is a regular Hartley tapped type, the same kind used in small portable superheterodyne receivers. Two suitable types are indicated in the Materials List. Sometimes the Hartley coil is cataloged simply as 6SA7 or 12SA7 type. Oscillator coils are built with either a metal bracket for mounting with screws and nuts or a snap-in fastener. After mounting tube sockets and a 2-lug terminal strip, you may begin wiring the oscillator following the pictorial wiring plan. (Fig. 5).

When using the oscillator as a home broadcaster, the maximum capacity of the tuning capacitor need not be over 250 mmf . This will tune from about 1700 kc . to 1000 kc . approxi-

mately. However, greater range is required when using the device as a signal generator. Therefore, a fixed mica capacitor of 470 mmf . is shunted across the variable capacitor to tune below 550 kc . (see schematic plan, Fig. 4.)
You can replace the miniature tuning capacitor with 410 or 450 mmf . maximum capacitance. The standard size capacitors cost much less than the miniature units, and there is ample room on the chassis for the larger sizes. You will still have to use a fixed capacitor with the larger tuning capacitor when tuning below 550 kc ., however.

Since the oscillator employs no step-down transformer, a voltagedropping resistor is wired in series with the tube heaters. Mount this 470 or 500 -ohm, 20 - or 25-watt unit near rear of chassis and away from other components, as shown in Fig. 6.

PHONO OSCILLATOR. (Wireless record player). Solder inner wire of shielded phonograph pickup wire to center pin of jack plug. Solder shield braid to the outer shell of phono plug. Insert this lead from the phonograph into the input jack of

SIGNAL GENERATOR. When using the oscillator as a signal generator, you will first have to locate three frequency settings on the oscillator, as accurately as possible. You may be able to use a professional signal generator from your local school against which your homemade oscillator may be calibrated. Tune the professional signal generator first to 1700 kc . and feed the signal from the output plug, through a shielded wire, to antenna post of a radio set. After tuning the radio to receive the professional generator's 1700 kc . signal, disconnect the generator. Be careful not to change the radio's dial setting during this operation. Now attach the output cable of your oscillator to the radio's antenna post, and tune the oscillator until the radio picks up its fundamental signal. Mark this 1700 kc . dial setting for future reference, on your oscillator.

Repeat this calibrating procedure with the professional signal generator next tuned to 1500 kc . and again at 455 kc . Your homemade oscillator will now have three precise frequency adjustments. The fourth setting is obtained by connecting 470 mmf . fixed capacitor across the oscillator's tuning capacitor.
If you don't have access to a professional signal generator, you can calibrate the oscillator with a good radio set. First, tune the radio so variable capacitor plates are wide open. The radio will then be tuned approximately at 1700 kc . Attach inner output lead of oscillator to antenna post of radio and tune oscillator until its carrier signal comes in over the radio. Mark oscillator dial at the precisely tuned point as 1700 kc . Now tune radio below 550 on its dial so capacitor plates are fully meshed. This is approximately 455 kc . but it's best to check this setting against a professional signal generator for calibrating the 455 kc . setting. Switch-in the 470 mmf . fixed condenser and tune the oscillator until signal is again heard through the radio. Mark this setting on oscillator dial as 455 kc .
Finally, to obtain the 1500 kc . setting, disengage the 470 mmf . fixed capacitor across tuning capacitor and tune radio dial to 1500 kc . Tune the oscillator until its carrier signal is heard through the radio, and mark this setting on the

Fig. 6. Bottom view of oscillator. Although compact, there is plenty of room for components.
dial as 1500 kc . The 1500 kc . setting can be fairly accurtately located since there are a great many stations in the United States operating on 1490 kc . By tuning your radio just above one of these 1490 kc . broadcasters-just enough so their signal is not heard, the set will be very close to 1500 kc . The 1500 kc . setting may also be located in many parts of the country by tuning in either WTOP in Washington, D. C. or KSTP in St. Paul. Both of these stations operate on 50,000 watts, 1500 kc . and may be received in many parts of U.S. and Canada at night.

ALIGNMENT FOR 455/465 KC. I.F. SUPERHETS. One of the most troublesome problems in radio servicing is the alignment of the I.F. sections of a receiver for peak performance. To use the oscillator for this job, insert the shielded lead into output jack on oscillator. Connect the inner cable wire to the stator plates of R.F. section of tuning capacitor (section with the large plates). Then ground the shielded braid of cable to the radio set chassis. Tune oscillator to 456 kc .
Tune the radio so variable capacitor plates are fully closed, and turn up volume control. Now, with a plastic blade screwdriver, made by filing a knitting needle to a screwdriver edge, adjust the screws on the second I.F. transformer until the "purring" carrier signal of the oscillator comes through at peak volume. Since this volume may be considerable, retard the volume control so carrier signal comes in distinctly.

With the plastic blade screwdriver, adjust the screws of the first I.F. transformer to again raise the volume of the carrier's "purr." The I.F. transformers can be given a final polishing off by a final adjustment of the second I.F. and another adjustment of first I.F. screws.
The final adjustments of aligning the radio set are for tracking the gang tuning capacitor. Connect the inner wire of the shielded output cable from the oscillator to the antenna post of the radio. If the radio has no antenna connection, place a plain unshielded wire from the output jack of oscillator near the radio's antenna loop,
or tape the output wire to the radio's loop for adequate capacitance pick-up. No actual connection need be made to the loop.
Tune both the oscillator and radio dial at 1700 $k c$. Now adjust the small trimmer capacitor below the oscillator section small plates of tuning capacitor with plastic blade screwdriver until
oscillator signal is loudest. Finally, tune oscillator and radio to 1500 kc . and adjust the small trimmer below the R.F. section large plates of tuning capacitor for maximum volume with the plastic blade screwdriver. With these adjustments for peaking performance, your receiver alignment is finished!

omagnetic ENDULUN

HERE'S a natural for electrical experimenters and physics students-a pendulum kept in motion indefinitely by two electro-magnets, which are of the same polarity and thus repel each other (Fig. 1).

One magnet, fixed on the lower end of the pendulum arm swings toward another magnet attached to the backboard. Just before the swinging magnet actually touches the fixed magnet, a switch actuated by the motion of the arm makes contact. This energizes the two magnets and the repulsion effect takes place. The arm swings away and then returns again only to be repelled. This pendulum action will take place indefinitely at a rate of about 70 strokes per minute.
Before anyone hollers perpetual motion, however, let's note that there is a power source which is needed to energize the magnet's polarity, and parts do wear out eventually and have to be replaced.

Note the neon lamp which has been added on top of the unit. This flashes at each swing of the arm. For those who insist on a practical use for such an experimental gadget, it could conceivably be rigged up as a movable display.
The S.P.D.T.-type Microswitch used in this unit has one normally-open contact and one normallyclosed contact. The magnets are connected in a circuit to the common terminal and the normallyopen one so that, as the pendulum arm swings against the switch operating lever, the contacts close and the desired action takes place. The normally-closed contact is connected in a circuit with a neon lamp, so that the bulb will blink at each swing of the pendulum.

Power for operating the unit is taken from a regular 115 volt ac house line. The selenium rectifier stack in this circuit provides half-wave pulsating dc current as required by the magnets.

Constructing the Base. Figure 2 shows you the dimensions of the $3 / 8 \mathrm{in}$. thick birch base pieces and backboard. Note in Fig. 2 the $11 / 4 \mathrm{in}$. wide framing strip glued and bradded at the back of the backboard panel to form a shallow boxlike section. Attach this frame to the top base piece with glue and two screws. Then glue and clamp bottom base piece to top base piece. Countersink all brads and screws and fill holes with

Pendulum at the extrome right position of its swing. Dotted llnes indicate oxtreme left position and travil of pendulum.

Plastic Wood. Then, with sandpaper, dress all mating edges off flush and round corners slightly. Finish with a generous, brushed-on coat of walnut oil stain (allow it to dry 5 to 8 minutes before wiping off all stain remaining on surface). About 4 to 6 hours later, apply several thin coats of white shellac diluted with about 20% alcohol or shellac solvent, lightly rubbing down each coat with fine steel wool after shellac hardens. Finish with paste wax polished briskly with a cloth.
(If wood is not of very close grain, apply some paste wood filler mixed with walnut stain, before applying the shellac. Apply with a piece of burlap, allow to dry a few minutes and then wipe off across the grain. Allow an hour to dry before applying shellac.)
Making the Pendulum Arm (Fig. 2). First,

MATERIALS LIST-MAGNETIC PENDULUM

obtain a $131 / 4 \mathrm{in}$. long piece of brass tubing ($3 / 8$ in. O.D., $8 / 10$ in. I.D.), stocked by some hardware stores and most metals suppliers. Dress the ends off smoothly to make this tubing $131 / 8 \mathrm{in}$. long when finished. Turn the brass knob which fits on top of the pendulum arm in a lathe and have it a press fit for the end of the tubing (Fig. 2F). This knob actuates the switch lever.

At the lower end of the arm, ream out the inside diameter of the tubing, if necessary, to get a press fit for the end of the steel magnet core that will be attached to the arm (Fig. 2J). Drill two holes in the tubing for the entrance and the exit of the lead wires that go to the magnet (Figs. 2H and J). Also, drill a $3 / 16$-in. hole, $31 / 32$ in. from the top of the pendulum arm, for the drill rod steel shaft or pin on which the arm will swing (Fig. 3). Have this hole a close but free fit for the shaft so the arm swings freely but without side motion or excessive looseness. The shaft is cut and threaded from drill rod as shown in Fig. 2C. Threading can be done by holding rod for shaft in lathe chuck and using tailstock to hold threading die squarely to the work. Then slowly turn

Drilling $3 / 16 \mathrm{in}$. diameter hole in pendulum tubing, for steel shaft which will support pendulum arm. Make sure hole is drilled at perfect right angle and exactly in center of tubing, by locking tubing between the V 's of the vise. For a smoother hole you might use sllghtly undersize drill and then roam to size.

Magnets can be wound on the lathe, using a temporary turn counter rigged up like this with a rubber vacuum cleaner belt, and $1: 1$ ratio pulleys. Wind
turns as evenly as possible, so surface of finished coil will be comparatively level.
die stock by hand and take up advance with tailstock screw.
Making the Magnets. Figures 2A and B show how the cores for both the pendulum and fixed magnets are made. To drill and tap the hole in the end of the fixed magnet's core (B in Fig. 2), secure the end of this core in the lathe chuck, and then use a center drill first,- followed by a \#35 drill. For accurate tapping, allow the tailstock center to enter the hole in the end of the tap wrench to thus keep the tap in line. Then slowly work the tap in by hand, taking up the advance with the tailstock screw. Apply some oil and be very careful not to break off the tap, working it back and forth a bit as the cutting of the threads advances.
Make four spool ends from $3 / 32$ or $1 / 8 \mathrm{in}$. thick plastic (Fig. 2A). You can either turn these in the lathe after cutting them out roughly round

Soldering flexible leads to termincl pins, after movable magnet's core has been pressed into pendulum tubing. Avoid too much heat on pins or they may loosen in plastic.
on a jigsaw, or, with care, make them round to a marked line on a sanding disc. The center holes in the spool ends must be a press fit on the steel cores. Press the plastic ends on the steel cores so that they will be $11 / 8 \mathrm{in}$. apart between the inside surfaces, to give you the correct amount of winding space. One end of the core should project $3 / 8$ in. beyond the spool end in each case. Wrap a layer of paper masking tape around core area between the spools, to act as insulation between the core and the coil that is to be wound on.
Drill a hole with a \#55 drill through the spool end, at the side that will represent the back end of the spool, and make this hole come through close to the taped core for the start end of the winding (Fig: 2A). Drill a second hole close to the outer edge of the plastic for the finish end. To make sure spool ends stay in place, apply a little Pliobond cement at the inside junction of the taped core and the ends, and allow this to dry.
Figure 4 illustrates how magnets can be wound on a lathe at slow speed ($100-200 \mathrm{rpm}$) with a turn counter belted to the lathe spindle to count the required turns. You can rig such a counter system by bolting or clamping a counter to the lathe bed, then fitting a $1-\mathrm{in}$. diameter pulley to the counter shaft and a second $1-\mathrm{in}$. diameter pulley over the lathe spindle, where it is locked in place by screwing on the chuck.
After winding on 2500 turns of \#31 Formvar or Formex magnet wire, as evenly as possible,

bring the finish end out the hole provided in the spool end (Fig. 2A). Wind both coils exactly alike. Since the two coils are to be connected in series, there will be a total of 5000 turns in the circuit.

When winding is complete, there should be a margin of about $1 / 8 \mathrm{in}$. remaining on the spool ends beyond the coil. Drill two \#52 holes in this space (Fig. 2A), but avoid touching the winding with the drill. Next, tightly press into these holes two pieces of $1 / 4 \mathrm{in}$. long brass or copper wire; these will act as terminal posts or pins to which the flexible lead wires will be soldered. Clean the ends of the magnet wire and wrap them around these terminal posts. (To clean off Formex insulation, hold a match under the end of the wire a few seconds; then clean with fine sandpaper.)
With the magnet core pressed into the end of the brass pendulum tube, carry two pieces of \# 28 flexible insulated lead wire down through the tube, and solder them to the terminal pins (Fig. 5). (Very small, extra flexible wire must be used here, so that it can be coiled up at the top end before it enters a hole in the backboard, and still have good flexibility as the pendulum swings.)
Figure 2 shows the holes you will need to drill in the backboard and details D and E in Fig. 2 show the brackets you will need for the switch and the fixed magnet. Attach the pendulum arm to the board as in Fig. 2H. Follow the wiring

Solderifg connections at terminal strip on back.
arrangement indicated in Figs. 6 and 7, and the installation of components shown in Figs. 8 through 10. Note in Figs. 2 and 9 how the fixed magnet is secured with a $1 / 2$-in. \#7 roundhead brass screw and washer through its supporting bracket.

You can vary the position of the fixed magnet by swinging the bracket mount so that when the arm is held up to allow the two magnet cores to touch, they will meet without striking the spool ends. Then tighten the screw down. Cut a $1 / 10$ in. thick rubber piece to $5 / 16 \mathrm{in}$. diameter circular shape. Cement this to the end of the fixed magnet core (Fig. 2B) with Pliobond cement, to act as a bumper in case the swinging magnet should touch the fixed magnet's core.
Mount the indicating neon lamp on top of the backboard in a flange-type bayonet socket (Fig. 7), fixed in a $3 / 4 \mathrm{in}$. diameter hole bored in the top surface. Attach the switch to a brass bracket (Fig. 2D) which has slotted holes, so that switch position can be adjusted as required. The switch position is critical since it has to energize the magnets at the precise moment that the swinging magnet pole almost touches the fixed one. The two magnets are so connected that like poles are produced in the two, so that there is repulsion action. In making the connections, try the operation with the power on and see if the swinging magnet is repelled or attracted. If the two attract, simply reverse the leads to one magnet.

A final touch is to make up and attach a backboard of $1 / 8-\mathrm{in}$. Masonite, to cover the wiring and enclose the live connections.

To Operate the Pendulum, make sure unit is on a level surface, then plug in the cord and swing the arm by hand until the two magnets 'touch. After that they will continue operation.

The switch position may need adjusting at first, to find the point for the best action. With the swinging magnet held up to the first one by hand, you should feel the repulsion when it is about $1 / 2 \mathrm{in}$. away from the pole of the fixed one. Apply a drop of light oil to the pendulum shaft occasionally to assure free motion.

If run without stopping, the operation of this pendulum will be limited only by the life of the switch (capable of millions of operations before failure), and the number of times the coiled leads can be flexed without breaking.

Dress Up that Lam Price W-PRICE record players are often sold minus everything but the bare es-

 RECORD PLAYER

 RECORD PLAYER}

Losentials, as was the case with the one shown in Fig. 1. But suppose we see what we can add to this player which will improve it. First, let's purchase a chrome drawer handle (for about 25 c) and mount it on the front of the player cabinet (Fig. 2).

The flocked finish on most low-price turntables is pretty hard and doesn't wear too long, so let's cut a heavy brown felt dise the same diameter as the turntable, cut a $\$ / 18$ in. diameter hole in the exact center of the felt disc, apply a thin coat of LePages' glue (thinned with a little hot water) to the turntable top, and press the felt disc on evenly. This felt covering is easier on your records and also helps to reduce rumble.
For an arm rest and lock (Figs. 2, 3, and 6), which is handy when player is being carried, cut and drill a simple plastic strip as shown. Give the top of the strip a slight clockwise twist

By ARTHUR TRAUFFER

Fig. 1. BEFORE-record pleyer as it came from the decaler.

Fig. 2. AFTER-all dolled up! Note chrome handle, layer of felt on hard turntable, arm rest and lock, and brackets for seeling up line cord and pickup cable.
so that it will line up with the side of the curved pickup arm. Remove crystal from the arm temporarily so that you can drill a $5 / 32$ in. hole through side of arm for a 6-32 rh (roundhead) brass machine screw about $1 / 2 \mathrm{in}$. long, a hexagon nut and a thumb nut (Fig. 4). Attach plastic arm rest to side of cabinet with two 6-32 rh brass machine screws about $3 / 4 \mathrm{in}$. long, positioning the arm rest so that screw on arm slips into slot freely.
If player is to be carried about, you'll want to have line and pickup cords neatly coiled and out of the way. To do this, mount two simple S-shaped brackets on back of player cabinet (Fig. 5). Bend the two brackets from $2 \times 2 \times 1 / 2-$ $x 1 / 18 \mathrm{in}$. brass angle brackets (the dime store has them). Mount brackets about $71 / 2 \mathrm{in}$. apart with four $3 / 4$ in. long 6-32 rh brass machine screws.

Fig. 6. Closeup of plastic arm rest and lock.

Strap allows set to be toted or tucked into pocket. Leather case (1A) may be purchased or handerafted. Top view
of simple, L-shaped chassis (IB). Loop coil snaps into fuse clips supported on spacers and a simple aluminum of simple, L-shaped chassis (IB). Loop coil snaps into fuse clip secures the miniature 9 -volt transistor cell.
clither

Pla ar Vou Go pocker Pay-ass.10u-Go portable

HERE is a four-transistor, superheterodyne pocket-size set (Fig. 1) that will play any-where-or almost anywhere. Because of the small size of the ferrite rod "loop" antenna, the sensitivity of this set-without employing an external antenna-is somewhat limited, but if you live in a community with stations operating on 10,000 watts or more power, no external antenna connection will be needed.
If you don't live in such a community, wind about three turns of plastic, stranded wire around the end of the ferrite loop where the leads are located. Tape the other end of the wire and attach a small battery clip or alligator clip to it. When this clip is attached to a metal object such as a metal screen, lamp standard, or phone box, even far-distant stations can be received, and the dangling wire alone may be sufficient for even the weaker local stations.

2 SCHEMATIC WIRING DIAGRAM
HOLE SYMBOLS
A-HOLES - $\frac{3^{\prime \prime}}{8}$ DIA.
8 - HOLES - $\frac{1^{\prime \prime}}{4}$ DIA. C. HOLES - $\frac{11}{32} \times \frac{1^{\prime \prime}}{8}$ D-HOLES - $\frac{11}{2} S Q$. UNMARKED HOLES ALL $\frac{1}{8}$ EXCEPT THOSE ADJACENT TO A WHICH ARE $\frac{1^{\circ}}{18}$

CHASSIS LAYOUT

NOTE: VERTICAL SPACING BETWEEN HOLES
NOT CRITICAL EXCEPT WHERE DIMENSIONS APPEAR

have no connecting leads since the connection is already made by an internal capacitor.
The tiny Bakelite transistor sockets are secured to the chassis by spring locking rings. Use a screwdriver blade to press and lock the ring to the socket body. The oscillator coil mounts firmly to the chassis without the use of brackets or screws. Simply insert a rubber grommet into the $1 / 4$-in. chassis hole, moisten the Bakelite coil tube with your lips, and press into the grommet hole.
Small components such as resistors, the diode detector, and electrolytic capacitors are neatly and firmly anchored by means of a six-lug tie-strip with separate grounding lugs at each end (see Fig. 6). Note that positive and negative positions are indicated for electrolytic capacitors and diode

The set's pee-wee dimensions are made possible through use of a sub-miniature two-gang, plastic encased tuning capacitor, volume control, phone jack, and I.F. transformers. These parts are readily available from the source given in the Materials List. When completed, this tubeless transistorized superhet will be no larger in size than two packages of king-size cigarettes.
The set is assembled on a simple, L-shaped chassis made from a piece of \#14 gage aluminum measuring $3-5 / 16 \times 5 \mathrm{in}$. Drill holes as indicated in Fig. 3 and bend up the end 90° as indicated by dotted lines. Then mount components as shown in Figs. 4, 5 and 6. The I.F. transformers are secured to the chassis by bending the end can lugs over the chassis after properly positioning each unit over the $1 / 2 \times 1 / 2 \mathrm{in}$. chassis holes. Note that these ground lugs are not numbered in Fig. 5. Note also that the insulated lugs \#4 on these transformers
detector. Capacitors use the conventional plus $(+)$ sign. Diodes, however, may indicate the positive side with either a dot or a band at one end of the unit. Components are positioned in the row of holes running parallel with the tie-strip, allowing pigtail leads on the top of chassis to terminate on the appropriate strip lug while the pigtail lead on the opposite end of the component terminates on its respective transistor socket lug on the underside of the chassis.
Chassis holes B, G, N and K in Fig. 5 allow passage of hookup leads from the top to the underside of the chassis. Practically all circuit connections can be made with the component pigtail leads. Since most of these leads are quite short, only the longer leads and those passing from one side of the chassis require insulation. Spaghetti radio tubing may be used for insulating purposes, or insulated vinyl hookup wire may be employed
as in the case of battery connector leads.

Mounting of the ferrite rod antenna coil is done last. To support the ferrite rod, mount two Littelfuse clips on $1 / 2$-in. by $3 / 16$-in. dia. spacers using $3 / 4$ in. $4-40$ machine screws to secure to chassis. All other screwfastened components use $1 / 4$-in. by 4-40 machine screws and nuts.

To insulate the miniature phone jack from the chassis, place a fiber washer on each side of the $3 / 8-\mathrm{in}$. mounting hole, with jack centered in the opening. A miniature matching phone jack is used to attach the earphone cord. Because the conducting material in the cord is tinsel, it will not solder to the phone plug lugs directly. In removing insulation from the tinsel cord do not
 "skin" it off with a knife or wire stripper, but apply the tip of a soldering iron to it and melt away about $1 / 4 \mathrm{in}$. and with a single strand of wire, such as found in 'fixture cord, bind the exposed tinsel much as you would tie a fishing fly. Then solder the cord tips to the phone plug lugs. Before screwing down the plug cap, cut out a small piece of cardboard and place it between the lugs to prevent the lugs from shorting against the plug cap as the cap is screwed down.

Wire as shown in the schematic, Fig. 2. With wiring completed, install 'the transistors in their respective sockets, secure the RCA \#VS-300 miniature $9-\mathrm{v}$. battery in the aluminum clip and attach snap connectors. To roughly align the set, provide an external antenna connection as previously described, turn on set with volume control at maximum and tune set until a station is heard. A good quality hearing aid type phone-one with a resistance of 2,000 to 10,000 ohms should be used with this unit. Do not expect results with imported crystal phones or "dynamic" phones from the Orient. Fine, British-made magnetic phones
cost only a few cents more than the others; many U. S. made hearing aids are equipped with these British earphones.

With a screwdriver blade, fashioned by filing flat the end of a plastic crochet needle, turn the slug screw in the oscillator coil in until signal is loudest, or about $41 / 2$ turns from the slug's flush position. Note that on the back of the tuning capacitor there are two screws marked "Ant." and "Osc." These are the trimmer adjustments. Turn the screw marked "Ant." until the movable halfmoon plate is $3 / 4$-meshed with the stationary plate. Next turn the "Osc." screw until its rotor plate meshes halfway with the stator plate.

The oscillator coil screw may be again turned a trifle left or right until peak signal strength is obtained. Set should now tune in numerous stations and, if of sufficient signal strength, they will come in without the external antenna pick-up.

This set can be housed in a variety of cabinets, but a leather instrument case such as that shown in Fig. 1A makes a neat arrangement. It is very

MATERIALS LIST-_POCKET PORTABLE

No.

[^4]No

No.
4 transistor sockets snap type battery comectors soldering Lugs, \#6 screws $4-40 \times 3 / 4^{\prime \prime}$ w/huts screws $4.40 \mathrm{x} / 4^{\prime \prime} \mathrm{w} /$ nuts
6-Iug tie-strip
sub-miniature phore jack and plug set with insulating fiber washers
9 v. midiature transistor radio battery (RCA \#VS.300)
battery mounting clip
lst I.F. transformer for transistor

> INPUT (T_{1}) (Lafayette MS.268 or
> (Automatic BS-725)

2nd I.F. transformer for transistor
(Lafayette MS-269 or OUTPUT (T_{2})
(Automatic BS.726)
ferrite rod antenna coil (L_{1}) $1 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$ (Lafayette MS.272) miniature oscillator coil $\left(L_{2}\right)$ for transistor Service (Lafayette MS-265)
magnetic type hearing aid phone (2000 ohms or higher)
All components listed are available either singly or in complete kit form from Lafayette Radio Div., R.W.T, Inc., 165.08 Liberty Avenue, Jamaica 33, L.I., N.Y.

Left, top of chassis with battery removed, as well as one transistor 10 reveal miniature 3-pin socket. Note rigid mounting for components provided by 6-lug tie-strip. Right, underside of chassis. Except for long leads which are covered with Nastic spaghetti insulation, short wires and disc capacitor leads are bare since ahngte are ualikelv.

IK

6CLOSE-UP DETAILS OF TIE-STRIP LOOKING DOWN ON CHASSIS CHASSIS HOLES

RTED IN
important that such a case have inside dimensions sufficient to accept the chassis; to avoid damage to components, inside measurements must be $13 / 16$ $\mathrm{x} 31 / 2 \times 4$ in. If a commercially made case isn't readily, available, handcraft and hobby shops
stock leather and bindings along with simple instructions for making a case to suit your needs.

If you are not too concerned with compactness, the sensitivity of the set can be increased by using a larger ferrite antenna coil and mounting it as far away from the set chassis as possible. Both the standard and miniature "loops" have the same red, white and blue color-coding.-T.A.B.

Midget 10-Cell Solar Battery Powers Two-Transistor Radio

A T.R.F. receiver (with improved selectivity) that can run on the sun

Above. The receiver with the solar battery and 2000 ohm headset plugged into their Jacks.

Right. The convertible radio is operating here entirely on solar energy. Plugging the solar battery into its jack automatically cuts the mercury battery out of the circuit.

HERE is a two-transistor radio with a builtin mercury battery for use on dull days or at night, and a separate solar battery
for use in bright sunshine or under strong artificial light (Figs 1 and 2). The radio can be built for about $\$ 10$, the solar battery for approximately $\$ 15$.

The simple tuned radio frequency type of circuit serves satisfacto-

By HAROLD P. STRAND

rily if the stations are not too closely spaced together on the dial, as is the case in some city areas. However, selectivity has been improved by using a tapped ferrite antenna coil of new design, which eliminates the need of partially unwinding the coil and tapping it or winding additional coil over the original one as is sometimes done to get a better low impedance match to the transistor.

Start construction by cutting out the base for mounting the components and making terminal connections from $1 / 18$ in. perforated Bakelite. Press tiny terminals called "flea" clips into the holes of the board to form convenient tie points. partially cutting off projecting ends on underside of base (Fig. 4). Use a $2-56$ tap in the perforations for making threads for screws to mount condenser and battery holder, or enlarge the holes and use 4-40.

Terminals and tie points are provided with tlea clips that press into the holes. Use diagonal pliers to cut off the projecting ends of the clips on the other side, leaving about $1 / 32$ in., then slighty spread the remaining ends so clips will stay in place. Insert, close-up of flea clip.

Drill the holes in the $11 / 4 \times 31 / 8 \times 37 / 8 \mathrm{in}$. plastic case carefully, since this material cracks quite easily (Fig. 3). For the larger holes, use a smaller drill and hand ream to size. There are two holes in each of three sides, four in the bottom and one in the cover to clear the condenser shaft. Cement $1 / 16$ in. thick washers to the bottom of the box over the holes used to secure Bakelite board to box, to act as spacers, and screw board in place with $4-40$ machine screws.
With all components in place as shown in Fig. 5, start the wiring (Fig. 6), using any small

To remove cover, first separate one hinge by pulling lightly, then tip cover so that a twist will unlock the other hinge. To replace cover, place it in the position shown above so the hinge pin enters at this side. The other hinge is then pressed together.

Use long-nose pliers to absorb the heat while holding each transistor lead for soldering.

With wiring complete, install condenser dial, the shaft having been cut off to about $3 / 8 \mathrm{in}$. (Fig. 5). The dial fits on the end in a flattened recess, with a center screw retainer to hold it tightly fixed, which is installed last after cover is closed. Place the battery in its holder, spreading holder if necessary, and taking care to get the plus and minus ends to correspond with the polarity shown in Fig. 5.

A short length of antenna wire and a ground connection may be necessary in some areas; however, good reception is possible in many cases by simply clipping the antenna lead to the finger stop of a dial telephone and using no ground, or to the wire frame of a large lamp shade. Or you can wrap several turns of insulated wire around several slats of a metal venetian blind and these slats picking up radio energy will deliver it to the receiver inductively.

To assemble the solar battery, attach the cells to the sides of the $1 \times 25 / 8 \times 35 / 8 \mathrm{in}$. plastic box with $4-40$ screws and nuts in drilled holes (as in Fig. 8). Mount a strip of the perforated Bakelite, such as was used in the radio, in the center to take the flea clips for lead connections. Connect all cells in series, that is, connect the red wire from one cell to the black of the next at a soldered connection and carry this to all cells, using a short jumper at the end of the two rows to join them as shown. This will leave one black (negative) and one red (positive) left over to connect at terminals to the leads with a plug on the end. It is very important to observe the polarity of the leads between cells, at the battery output terminals, and also at the plug connections so that the battery will be correctly connected. The positive lead is soldered to the positive plug terminal which is grounded to the body of the plug, the negative

MATERIALS LIST-SOLAR OR DRY CELL RADIO

All material available from Lafayette Radio, $\mathbf{1 6 5 - 0 8}$ Liberty Ave., Jamaica 33, N. Y., or 110 Federal Street, Boston, Mass.

Amt.	Description Lafayette Cat. (1957)
1	plastic case $11 / 4 \times 31 / 8 \times 31 / 8^{\prime \prime}$ MS-298
1	
1	tuning dial ${ }^{\text {KN }}$ MS.25
1	condenser mounting bracket MS. 310
1	transistor tapped Vari-Loop antenna coil swith YC. 28
1	W0,000 ohm miniature volume control with swith MC. ${ }^{\text {a }}$
2	
2	sub-miniature jacks sub-miniature pluas
2	insulated tip jacks MS-213 or PJ-23
2	phone tip plugs ${ }^{\text {a }}$ (S-212 or PJ-11
1	Matlory mercury 4 volt battery TR-133
1	battery holder
	perforated Bakelite sheet $1 / 16 \times 311 / 16 \times 6 / 82$
2	transistors, G.E. 2 N107 or Raytheon CKT22 MS-263
1 pkg	flea terminal clips (12) MS-263
1	2 mfd 6 volt Argonne condenser
	10 mfd 15 volt Argonne condenser
1	$270,000 \mathrm{ohm} 1 / 2$ watt resiston
1	1 1 34 diode (or 1N34A, 1N48, 1 N64)
2	Mueller test clips \#45 for antenna and oround connettions
	plastic insulated stranded wire \#22 to 24 gape (for
	antenna and oround lead)
3 in.	shielded cable, Beidon 8885
3 ft	hook-up wire, plastic-sovered, \#24 oave or smalier,
	solid or stranded
	2.56 or 4.40 mathine screws (from hardware stores)
1	2000 ohm headjphone (Cannon AM.15-2, about \$2.08),
	or hearing-aid-type earpiece with less volume and tonal quality (Cat. \#MS-260, \$3.95)
	Solar Battery
10	International Rectifier Corp. B2M solar cells ($\$ 1.47$ ea., including wire leads and mounting brackets)
$\begin{aligned} & 1 \mathrm{pc} \\ & 1 \\ & 1 \end{aligned}$	perforated Bakelite sheet about $1 / 16 \times 33 / 8 \times 11 / 10^{\prime \prime}$, cuttino from radio plece fiea clips (12) MS-263
3 ft	small gage plastic-covered wire for solar battery leads. Can use hearing aid cord (not tinsel type), or other
	stranded wire of iabout 26 gage

to the terminal which is insulated to form the tip connection or negative side. If the leads are twisted together to form a cable, it may be hard to trace individual wires. In this case, use an ohmmeter or other indicating device to trace the wires at both ends to get the connections correct, or use a voltmeter with the battery in the sun to check for correct polarity. The radio will not work on reversed polarity of either the dry or solar battery and may be damaged.

This solar battery is useful for powering any one- or two-transistor radio or other equipment having very light current requirements. Our radio uses around .45 milliamperes, which allows a voltage of about 2.7 volts, and which is sufficient to run the set very well. With twice as many cells connected in series-parallel, you get twice the output current. but it is probably better to employ larger cells in a straight series circuit for such cases.

Electical Coil-winding

 MachineBy HAROLD P. STRAND Craft Print Project No. 265

UNLESS you have a metal-turning lathe, or some similar machine capable of holding and turning a coil-winding form at a slow speed, winding a coil having hundreds of turns on it can be quite a chore. To answer the need for such a machine for those of you interested in making home-built electronic devices requiring coils for special size transformers, solenoids, etc., the electric-motor driven winder shown in Fig. 1 has been developed.
The winder is powered with a used Hoover vacuum-cleaner motor purchased at a repair shop for $\$ 5$. It is of the ac-dc or universal type which is subject to speed control with a variable resistance or reactor and is of a large heavy-duty type. The machine's foot controlled reactor (Fig. 1) has an infinite number of speed control steps; it will not heat up in use, wasting power; and has no wiping contacts usually employed with a resistance control.
When purchasing the vacuum-cleaner motor, turn it on and observe the commutator. There should not be appreciable arcing at the brushes which could indicate a short in the armature winding. Failure to run at its customary high speed is another indication of defective armature windings. However, worn carbon brushes could also produce these effects, so check the length of the brushes-

Variable speed, foot-control switch regulates speed of motor when winding coil. Photo A shows how magnet wire is hand guided from spool to coil windings.
they should be at least $7 / 10$ in. long. Also check the armature-shaft bearings for wear. Remove the motor from the cleaner and attempt to move the fan and shaft from side to side. Any side mquement indicates worn bearings. A little end play, in and out movement of the shaft, is permissible, however. Select a motor having a $3 / 8$ in. dia. shaft on it.

Left, Cleaning disassembled motor with rag moistened in kerosene. Right, Clean commutator with fine sandpaper to inspect it for grooves or ridges.

A 150-watt lamp is connected in series with motor to reduce lis speed when test running.

After purchasing a motor in the best possible condition, take it apart and clean with kerosene or carbon-tet. First remove the brush holders and brushes from their supports on the insulated ring. Then remove the two screws at the ring of the outside bearing cap, disassemble the motor as in Fig. 2. When cleaning, do not immerse the wound parts in cleaning fluid, merely wipe them off with a cloth dampened with the cleaning fluid or brush off the dirt if it is dry and loose. Clean the armature commutator with fine sandpaper as in Fig. 3. If ridges or grooves appear on the commutator after cleaning, have it turned down in a lathe and lightly sand smooth. Then clean out any deposits between the segments, which might cause shorts, by scraping with a thin but sharp tool. A quick test for shorts or grounded wiring in the armature can be made by having it tested on a growler at your local automotive generator repair shop. If it is found that new armature-shaft bearings are needed, they can best be installed at a vacuum-cleaner repair shop while you have the motor apart. At this time also saw off the $3 / 8 \mathrm{in}$. armature shaft so that it will project only 1 in. beyond the outside edge of the bearing when as-

${ }_{2}^{\mathrm{No}}$.	MATERIALS LIST-COIL-WINDER Main Motor Unit Description
	used universal motor from a (Hoover) vacuum cleaner, having a $38^{\prime \prime}$ dia. shaft, vertical mounted with togole
\$1/	
1	(Sears Roebuck) I.D. $x 1^{\prime \prime}$ lo leduce $1 / 2^{\prime \prime}$ pulley to $3 / 8^{\prime \prime}$ shaft $(1 / 20 . D \times 3 / 8$ I.D. $\times 1^{\prime \prime}$ long). (Boston Gear Works, 14 Hayward Street.
	$6^{\prime \prime}$ dia. pulley for small belt with $1 / 2^{\prime \prime}$ dia. hole (Sears
11111	
	1/2" chuck to fit shaft (Sears Retuck)
	Batkelite surface thoe logole switch with slotted bast
10.14 ft	round rubber, light duty vacuum cleaner cord (rac.
	attachment pluo cap (electrical supply store)
	$21 / 2 \times 21 / 2 \times 1 /{ }^{\prime \prime \prime}$ "angle iron $31 / 4^{\prime \prime}$ long (strap piece from
1	
	in a circle (rac. cleaner shop) ${ }^{\text {aluminum or }}$ hot rolled soft steel $1 / 16 \times 23 / 8 \times$ about $41 / 2^{\prime \prime}$.
	(scrap) (bend to make gou
	Revolution Veeder-Root counter with reset knob or key, 4
	direct single turns. Purchase from large hardware and.
	th Floor, 27 Sargeant Ave., Hartford, Conn., for neardistributor or try surplus concerns
$\begin{aligned} & 2 \\ & \begin{array}{l} 2 \mathrm{pcs} \\ 1 \\ 1 \\ 1 \\ \mathrm{pcc} \\ \text { poc } \end{array} \end{aligned}$	
	Bakelite or brass $11 / 2$ dia. \times about $11 / 2^{\prime \prime}$. lono (turn to mate counter pulley) or purchase 2 Cat. \#PVL 1.5
	pulleys from Booston Gear Works. For sprocket drive.
	$33^{\prime \prime}$, dia. rubber headed tacks tor base
${ }_{1}^{4} 1$ pe	
3	if larger than $31 / 4$, spoois are to be used (spool holder) brass washers about $1^{\prime \prime}$ dlameter, $1 / 8^{\prime \prime}$ thick to fit over
	(soor
1	coil spring to fit over) ${ }^{\text {cosem }}$ piano wire (spool holder)
$\frac{1}{2}$	
	soit iron mistellaneous, strems,

sembled. Be sure to apply a drop or two of light machine oil on the bearings when assembling the motor and install new brushes if the old ones are worn down to under $7 / 18 \mathrm{in}$. in length. Since these motors operate in a clockwise direction, when facing the shaft, change the direction of rotation by interchanging the two brush leads. Later, after testing the motor, adjust the insulated brush ring so that the brushes will be located at a point
 $11 / 2$ in. dia. V-belt pulley with a
$3 / 8 \mathrm{in}$. bore, a $1 / 2$ O.D. $\times 3 / 8$ I.D. bushing is placed in the $1 / 2 \mathrm{in}$. hole of the pulley. Drill through the bushing so that the pulley setscrew can be tight ened down against the motor shaft.
Make the base (Fig. 5B) next by gluing two pieces of $3 / 4 \mathrm{in}$. plywood together to form a $11 / 2$ in. thick piece. Have a $1 / 18$ in. thick piece of sheet steel cut to the exact size of the plywood base at your local sheet-metal shop and fasten to the base with six \#6x1 in. fh screws countersunk flush with the steel base top. Dress the edges of the steel top with a sanding disc and slightly round the top corners with a file. Then lay out and drill the holes for the motor bracket and spool support. To finish the base, give it two coats of gray paint on the edges and bottom of the plywood and attach four $3 / 4 \mathrm{in}$. dia. rubber headed tacks to the underside at the corners for feet.
After purchasing the counter, (see Materials

List for source of supply) make the counter support bracket (Fig. 5C). Since the counter must rotate at a one-to-one ratio with the polishinghead shaft, a pulley having the exact same diameter as the small pulley on the polishing-head (Fig. 7) must be made for the counter shaft. If you have a metal-turning lathe this becomes a fairly simple matter. Make the pulley for a round, rubber vacuum cleaner belt. Prill and tap the pulley for a $6-32$ set-screw to fasten it to the counter shaft. If you do not have a metal turning lathe, purchase the two $11 / 2$-in. pulleys noted in Materials List. Bore one to $1 / 2$ in. for polishing head and bush the other to suit counter shaft. A chain and sprocket drive (Fig. 6) which costs about $\$ \$ 5$ for parts, would assure accuracy.
The winder parts can now be assembled to the base for testing. Loosen the set-screw in the small pulley of the polishing head, slide the

Left, Altermate drive design using ehain and sprocket assures positive accuracy in counting number of turns. Right, Making accuracy check of counter by turning polishing head shaft by hamd a counted number of times.

A cotterpin retains spool and spring whith applies braking action on spool to prevent spinning.
threaded shaft and slip the vacuum cleaner belt on the small pulley. Reassemble the shaft and place a 6 in. dia. V-belt pulley on the end of the shaft having the left-hand threads. Bolt the motor to the base first. Then, with the V-belt on the motor and polishing head pulleys pulled taut and in line with each other, mark the base for the polishing head mounting bolts, drill and fasten the head to the base. Locate and mount the counter on the base in the same way.

To check the counter drive for accuracy, mount a hand-tight drill chuck on the polishing-head spindle and grip a piece of wire bent to the shape
of a handle in the chuck jaws as in Fig. 7. Then mark the chuck or 6 in. pulley with a spot of paint or crayon so that the number of revolutions can be counted as the crank is turned. Set the counter at zero, turn the crank exactly 10 times and note the number of turns registered on the counter. If there is much of a difference in pulley diameters it will show up on the counter as over or under 10 turns. If the error in pulley diameter is only very slight, the counter will probably register accurately over so few turns. However, since even a slight error will be cumulative, it is well to try a hundred or more turns of the crank if 10 turns show up accurate. If the figures on the counter are less than the number turned by hand, it indicates the pulley on the counter is larger than the pulley on the polishing head. If the figures are more than the number turned by hand, the pulley on the counter is smaller than the polishing head pulley. You can reduce the diameter of either pulley by putting it in a lathe, if you have one or can secure the use of one, and turning the bottom of the pulley groove down. It is also possible to place a turn of narrow friction tape at the bottom of the pulley grooves to make the size correction.

After testing the counter and making the corrections if needed, make the holder for the mag-net-wire spool as detailed in Fig. 5D. Fasten the holder to the base with two bolts and using nuts as in Fig. 8. If various width spools of wire are to be used, make the bar longer and drill several holes 'spaced to suit the spools. Allow space for the washers and spring compressed enough to supply some braking action on the spool so that when the winding is stopped, the spool will not spin around and tangle the wire.

Making Variable Speed Foot Control Switch

After completing the coil-winding machine itself, your next step is to make the variable
 laminations in the coil varies the reactance, which in turn causes a variation in the motor speed as required for winding various types of coils.
When the core is fully in the coil (Fig. 9), the reactance will be maximum and the power to the motor will be choked off to bring it to a virtual stop. On this position, the foot pedal is at its upper position and a switch arranged to be operated by the downward mo-
 WHERE LEADS CAN BE BROUGHT OUT WIHOUT INTERFERING WITH THE CORE
COR AND WINDING FORM DETAILS tion of the core
will open the line to fully cut off power to the motor.
As the foot pedal is depressed (Fig. 10), the core is raised out of the coil giving a very smooth increase in motor speed until the pedal is nearly down to the base at which point the core is practically out of the coil and the motor is then running only on the impedance of the winding or nearly full speed. With further pressure on the pedal, a second switch is operated automatically to short out the coil and the motor then is direct-
ly on the line at full speed.
Start construction with the laminated core. Obtain an old radio power transformer which has laminations of approximately the size shown in Fig. 12. Disassemble the transformer and pile up a stack of the E-shaped laminations $11 / \mathrm{sin}$. high. Clamp, drill and flush rivet the stack together to form a solid block as in Fig. 12.
The coil can be wound on the completed winding machine by using a temporary adjustable resistance, such as a rheostat or slide wire (Fig. 13),
to limit the speed. First, make up a winding form (Fig. 11) with a center block $13 / 8 \times 13 / 4 \times 13 / 4 \mathrm{in}$. long with a $1 / 4$-in. dia. hole through the center. Smooth the block well and slightly round the corners. Make the sides from $3 / 3-\mathrm{in}$. plywood and cut slots for the tie strings in the four sides of the block and the side pieces so that strings can be passed in under the coil. Apply a little wax to the form block after it is assembled to aid in getting the block out of the finished coil easily. Before winding the wire, place a turn of $.015-\mathrm{in}$. insulating paper tightly around the block and fasten with cellophane tape. Using Formvar \#22 wire, solder a \#18 flexible insulated lead on the start end of the wire and wind 650 turns on the coil form. Solder a flexible insulated lead (Fig. 14), to the finish end. Use a short piece of spaghetii tubing over the splices for insulation. Wind the turns in a tight even manner, avoiding unnecessary crossing of turns. Be sure to bring the leacs out of the slot in the form at one of the two narrow sides so as not to interfere with the core.

Bind the coil together with strings passed under the coil at four points and tightly tied (Fig. 15). Then remove the bolt and carefully tap the center block out.'
Insert the stacked core block into the coil to see if enough space exists for taping the coil and installation of the brass guide pieces and still allow the core to slide up and down freely. The coil can also be temporarily

	MATERIALS LIST-FOOT CONTROL All dimensions in inches
No.	Size and Description I Use
1	old power radio transformer having a core with laminations as detailed in a drawing
2	microswitches, double-throw type with arms and rollers. Type HEPC (electronic supply stores)
11/4 lbs	(approx) \#22 Formex or Formvar magnet wire (try motor winding shops or Allied Radio, Chicago has it in 1 lb. spools. Purchase 2 spools and splice ends together.
1 pt	$38 \times 53 / 8 \times 111 / 4$ birch plywood base
1 pe	$3 / 8 \times 34 / 16 \times 63 / 8$ birch plywood pedal
1 pc	$31 / 4^{\prime \prime}$ long piano hinge
1 DC	5/32 $\times 3 / 4 \times 9$ long cold rolled steel bracket support
1 pc	about . 056 thick $\times 7 / 16 \times 27 / 8$ sheet brass pulley bearing bracket
2 pcs	about .032 thick $\times 1916 \times 5$ sheet brass make two core guides
1 pc	about .032 thick $\times 1 / 2 \times 9$ sheet brass make 4 side guides
1 pc	$1 / 8 \times 3 / 4 \times$ about $21 / 4$ cold rolled steel make core stop
1 pc	$3 / 4$ dia. $\times 11 / 4$ long brass turn to make pulley
1	
1 pc	.052-.054 $\times 11 / 16 \times 5$ cold rolled steel make supports for 2 switches
1 DC	$1 / 8$ dia. and 8 lono, extra fiexible steel cable, or use strong cord or small chain bend to make eye for foot pedal
1 nc	$1 / 16$ dia. $x 1$ long steel rod (soft) bend to make cable clamp
1 pe	$1 / 32 \times 5 / 8 \times 2$ soft sheet steel for line cord
2 pes	. $050 \times 7 / 16 \times 13 / 8$ soft steel switch cams
4	$5 / 8$ dia. rubber knob feet with wood serews Allied Radio Cat. 44 N764 under side of base
1 pc	\#14-12 gage $\times 4$ long soft iron wire bend to make eye on top of core
1 DC	$61 / 4 \times 25$ perforated sheet metal about .032 thick in any desion to make enclosure around foot control parts
1 日	Misc. screws, nuts, washers, hook-up wire, paints, etc. \#18 two-wire vacuum-cleaner line cord. 5 ft . Iong.

1 \#c \#18 two-wire vacuum-cleaner line cord. 5 ft . Iong.

series connected in the motor circuit as a test for speed control at this time. In our case it was found that about $11 / 8$ in. of laminations brought the motor practically to a stop which is correct. Take care not to damage the wire insulation in this test. Now, tape the coil with varnished cambric tape or cotton tape shellacked after taping, pulling it tightly and cutting the strings as they are approached. Bind the end of the cambric tape with some cellophane tape. If the coil seemed a little thick for a good fit with the core, reinsert the slightly dressed down center block and clamp it in a vise as in Fig. 16 to compress it somewhat.

Next, make up the brass core guides (Fig. 12), that provide a wearing surface for the moving core and keep it in a vertical position. Bend the "U" sections of the guides to fit tightly over the coil sides. Before soldering vertical guide pieces to main sections, place main portions on coil and test for clearance by inserting the core into the coil (Fig. 17). Bend the vertical guides to the shape of a 90° angle, and holding them in place on each side of the core so that the core will slide freely, mark their position on the main portions of the core guides. Remove the core and guides from the coil and

Winding mechto is hooked up with variable resistance unft (shown in left background) to reduce speed of motor for winding reactor coil.

Left, at 650 th turn solder © lead on end of coil wire, tnsulate the splice with a plece of spaghett tubing and carry lead out slot at narrow side of form. Right, bind the coil together belore removing'll from the form.

Left, if the coll is too thick for a proper fit with the core, comprese it in a vise. Right, tonting core to see that it slides freely up and down in coil.

Left, fastening perforcted metal enclosure to base with wood screws. Alght, covering chain drive with guard.
solder the vertical guides to the core guides as in Fig. 12. With a sharp chisel, remove any excess solder that might interfere.
Make the base and pedal for the foot control as in Fig. 12 and fasten together with a piece of piano hinge. Bend up the bracket support core stop and switch supports from cold-rolled strip stock and drill needed holes. Turn the pulley (Fig. 12) from brass stock and make and fasten the pulley bearing bracket to the top of the bracket support with a 6-32 machine screw. If you do not have a metal turning lathe with which to make the pulley, substitute aluminum or hard maple for brass and turn the pulley on a woodturning lathe. Assemble the pulley to the bracket with a $1 / 8 \mathrm{in}$. dia. steel pin riveted over lightly at each end.
Next, fasten the coil to the base with the core guides, bolting them in place. Fasten an 8 in . length of flexible wire cable, $1 / 8 \mathrm{in}$. dia. to the wire loop on the top of the core, feed the cable through the pulley on the bracket support and locate the support so that the core is directly below the pulley as in Fig. 18. Offset the bracket support by bending as in Fig. 18 if needed to align the pulley. Drill the end of the foot pedal and fasten an eyebolt to it for the other end of the cable. The length of the cable should be such that the core will be almost raised out of the coil when the pedal is fully down as in Fig. 10.

Fasten the core stop to the bracket support and cement pieces of rubber directly below each end of the core to serve as bumpers for the core.
Bolt two Microswitches to the switch supports and then fasten the supports to the base so that the rollers on the switches will bear lightly against the core but with actuating contacts not operated. To actuate the switches, make the operating cams (Fig. 12) and fasten to the core with $4-40$ screws as in Fig. 12. Microswitch A, Fig. 18 cuts off the line current when the pedal is in the up position and core fully down. Microswitch B, Fig. 18 shorts out the coil when the core is in the up position so that the motor operates at top speed directly from the line.

Hook up the foot control switch to the coilwinder motor as shown in Fig. 19. Since the foot switch will be on the floor under the bench or table, make the cord extending from the foot switch to the motor switch about 5 ft . long. Bring this cord into the motor switch box through a notch provided in the base of the Bakelite switch that was substituted for the original motor switch.
To prevent the foot-switch mechanism from becoming damaged and yet provide ventilation make an enclosure of perforated sheet metal as in Fig. 20. Fasten the joining corners with rivets or sheet-metal screws and attach the lower edges to the base with $\# 2 \times 3 / 8 \mathrm{in}$. rh screws as in Fig. 20. Also make a perforated-metal guard (Fig. 21) if you are using a chain drive on the winding machine. Attach four rubber-knob feet to the bottom of the base to prevent slippage.
When winding coils with this machine be sure that the center bolt extending through the coil form is securely tightened so there is no chance of the form slipping on the bolt. Also securely tighten the chuck holding the bolt to prevent slippage at that point. Otherwise, the number of turns indicated on the counter will be in error.

- Craft Print No. 265, in enlarged size for building the Electrical Coil-Winding Machine is available at \$1. SPECIAL QUANTITY DISCOUNT! If you order two or more craft prints (this or any other print), you may deduct 256 from the regular price of each print. Hence, for two prints, deduct 506; three prints, deduct 756; etc. Order by print number, enclosing remittance (no C.O.D.'s or stamps) from Craft Print Dept. 5511, Science and Mechanics, 450 East Ohio Street, Chicago 11, Illinois. Now available, our new illustrated catalog of "L86 Do It Yourself Plans," 104. Please allow four weeks for delivery.

By JERRY ṠKELLY

TAKE your pick with the Ionovac, a soundreproducing cell the size of a peanut shell. With it you can tune in superb hi-fi, clean hypodermic needles, age wine, and weld metal. Or other versions of the same type of cell might even be used to kill living tissue.
A tiny cloud of ionized air, glowing a jewel-like violet reproduces and modulates the sound in this small quartz cell. Highfrequency electricity, modulated according to the sounds or signals fed into the Ionovac's circuit, ionizes the cloud, making it expand and contract to mechanically push sound waves out of the cell's open end.

With the Ionovac, for the first time, ultrasonic ranges can be dialed at will instead of laboriously preset. Since no moving diaphragms or cones are used in the waspwaisted unit, it is freed of the bonds these moving parts put on frequency response. And so not only does it reproduce audible sounds impeccably, but its notably smooth high re-

In this hidi addict's Sherlock Holmesian cloneup nothing goes unnoticed. Small polnt at top is one golden lonizing electrode lead. Small wire loop around quartz chamber's wasp waist is second ionizing electrode. Air cloud is lonized in long hollow ond which narrows at watat to aperture the diameter of an automatic-pencil lead. Cloud is similar electrically - to ourth's ionosphere.
sponse reaches well into the ultrasonic range.
The first job for the Ionovac, built by DuKane Corp., St. Charles, Ill., will be as a new type of tweeter, or high frequency speaker, in radios and high fidelity phonograph systems (as a 50 -cycle woofer, for example, its horn would have to be 28 ft . long). Hi-fi enthusiasts will cheer its wide response and its freedom from the sharp hills and valleys customary with cone and compression type tweeters (see Fig. 3).
Later, industry likely will be lining up to hire the sound cell. Since the Ionovac is an aperiodic device, that is, one which has no resonances and need not be used in a tuned condition

Full lonovac layout for hi-fi tweeter assembly includes: (1) horn (2) ionizing cell (3) spring contact bracket (4) power transformer (5) rectitier tube (6) modulator tube (7) 6146 oscillator tube 20 mc (8) inner tank coil (9) outer tank coil (10) primary coil of step-up RF transformer (11) Ionovac shield can (12) secondary coil of stepup RF transformer (13) [whole unit] lonovac power supply and oscillator (14) coaxial cable connector. Oscillator, acting as small-scale broadcasfing station, sends modulated, high-frequency power to ion cell to reproduce sound impulses fed into it.
useful, if also frightening, power to control our voluntary muscles. And both frightening and encouraging are the potentialities of larger ionized-air units for breaking down living cells. DuKane is planning ul-trasonic-proof labs with built-in employee protection for testing larger ionization units.
The immediate forerunner of the Ionovac was the Ionophone, invented by Siegfried Klein in Paris about six years ago. While the Ionovac's basic operating principle is the same as the Ionophone's, the DuKane unit has better materials, a higher exciting frequency, and a six-fold increase in the sound power level.

Even before the Ionophone, there were many devices aimed at reproducing sound by using modulated expanding air. Thomas Edison worked on equipment aimed at doing the job with heated air.
Between 1928 and 1931 there were at least five U.S. patents issued to inventors, including Lee DeForrest, for ionic speakers. Many of these were highly ingenious but in general they flunked acceptance because they didn't effectively radiate their sound waves in space and could not compete in efficiency with the moving-coil loud speaker, then coming into its heyday.
With the Post-World-War II increase of interest in high fidelity sound reproduction came a new demand for the distortion-free reproduction of treble sounds. Concerns for efficiency became secondary. Full frequency range in a single speaker was not necessarily required, and the moving-coil speakers' uneven high response began to strike listeners as more objectionable.

Against this background Klein developed his

In this sample response curve for lonovac hi-fi sys. tem, mote relative freedom from very sharp hills and valleys customary with methanically actuated conetype speaters. Besides radio-phonograph applications, ionized-air system can be used as a variable generator of both audible and ultrasonic sound waves of 1000 to 1 million cycles.

Ionophone. Its main contribution in the history of ionic speakers was to locate the ion chamber at the throat of an efficient horn. Yet there were still problems of corona noise, low output, and interference with nearby TV and radio equipment.
After getting sole North American manufacturing licensing for the Ionophone in December, 1955, DuKane began its work of refining Klein's Ionophone and hired Klein himself to help with the job. Also racing to do the same perfecting work were the European licensees including Plessy, Ltd., in England; Audax in France; Telefunken, in Germany, and A.E.G. in Sweden. Although DuKane was the first to develop a workable unit, its findings will be shared with other firms through a pool agreement.
In operation, (Fig. 5) a low current electrical field of about 15,000 volts alternating at 20 megacycles is applied between the two discharge electrodes. This intense electrical field tends to strip electrons from the outer orbits of the gas atoms of the air in the chamber. By this process, called ionization, many of the gas atoms are left positively charged ions. Since these ions are of the same charge, they tend to repel each other and their increased activity increases the total mass of the molecules in the cell, creating a sound pressure within the ion chamber and emitting a violet light. The opening in one end of this quartz chamber leads directly into the throat of a horn which efficiently radiates the air-cloud sound pressure into the surrounding area.
The number of lons is modulated by modulating the 20 Mc field. This field is developed by a single 6146 tube used as a self-excited oscillator. The 6146 is arranged to be screen modulated by the amplified audio input. Only about $\% / 10$ of a volt of audio is needed to get the Ionovac's full acoustic output. At peaks the oscillator is modulated only about 60% to minimize distortion.
As the audio signal rises, the modulated oscil-

how ionovac works
Diagram of Ionovac operation traces progrest and reproduction of modulated sound waves from audio input (left) through oscillator and circuitry to ion chamber and finclly out into the horn and room beyond. Note fower lons where dipping waves show decreasing sound.
lator output increases. This rise in ionizing voltage boosts the number of ions available. The oscillation activity among the ions also in-1 creases, and the positive sound pressure wave which this action swells out spreads down the throat of the horn.
Then when the audio signal is modulating downwards the intensity of the ionizing field lessens. The number of ions is reduced and the sound pressure created

Fig. 6. Comparison of (A) moving coil loud speaker (B) electrostatic speaker (C) Ionovae, shows the much greator simplicity of the ion-cell's sound reproducing structure. Connecting to hi-fi layouts (Fig. 7) would not be difficult.
at the throat of the horn is less than the moment before. This is heard as a negative sound pressure wave.
Sounds, of course, not violet lights and ions are what you want once you've settled down for an evening of Brahms or John Philip Sousa. The elimination of mechanically moving parts lets sound be reproduced clearly; frequency response is excellent. When used as a tweeter the Ionovac has a soft, almost silky sound. There are no metallic overtones or resonances in its high sounds. Tones, harmonics and transients up to the limit of hearing come through clearly.

The output level of the Ionovac compares very favorably with that of other "super-tweetets." Good balance between treble, mid-range and bass tones should be possible in quality speaker units.
In the next few years inevitable competition between ionic speakers and electrostatic speakers should result in better units of both types.
In both audio and ultrasonic application, we stand to hear-or not hear-much more about the tiny, ionized cloud and the work it does.

ELECTRONIC TIC-TAC-TOE

T'S also spelled Ticktacktoe and also called Tit-Tat-Toe (in England, they call it Naughts and Crosses), but by whatever name it goes under, chances áre you've played it-two horizontal lines, two vertical on a piece of paper. One player takes the naughts (0); the other, the crosses (X), and each takes his turn placing his symbol in one of the spaces on the paper until-either vertically, horizontally or diagonally-he has three crosses (or three naughts) in a row, or until it becomes impossible for either player to make such a combination. And, of course, while one player is attempting to place three of his symbols in a row, the other player-in addition to trying to do the same-must attempt to block his opponent. Actually, it's a fairly simple struggle of wits (with $\mathbf{1 5 , 1 2 0}$ possible combinations of moves). Simple enough, however, for an assortment of switches built into a panel to have mastered it.
The device in Fig. 1 contains those switches and, as originally built, a human being was doomed to a draw or worse in every encounter with the unit. (As modified, you and I now stand a chance of winning; but more of the modification later.) The "brains" of the device are two rotary switches. Its move-signaling apparatus consists of nine slide switches and nine GE222 flashlight bulbs powered by two $11 / 2-v .935 \mathrm{C}$ dry cells in series.
To donstruct this electronic Tic-Tac-Toe, first saw out, sand smooth and shellac a $3 / 4-\mathrm{in}$. piece of pine or plywood $6 \times 6 \mathrm{in}$. square. This is the block chassis of the unit. The front

Man againat Machine: And the odd thing is, the machine has to be handicapped in order to afford the man hell a chance.

panel is made from $1 / 8-\mathrm{in}$. tempered hardboard to the dimensions given as shown in Fig. 2. Incise the square lines and fill them with white paint to make them stand out. The back panel is also $1 / 8-\mathrm{in}$. tempered hardboard, cut to a $6 \times 6-\mathrm{in}$. square.

After cutting out chassis and panels, take the nine slide switches and paint white that area of the switch visible when it is turned on. Let dry and then install the slide switches and the nine bulb sockets, bending the Dialco 505 socket arms to a right angle (as shown in Fig. 3) for proper mounting on the front panel. Mount the nine-deck and the two-deck rotary switches and, using \#20 wire or smaller, begin wiring. Wire as shown in Figs. 3 and 4, color-coding your wiring wherever possible to make any error tracing easier. In many tases, wiring on the deck switches can be stripped and brought directly from one terminal to the next.

The multi-gang, nine-deck, 10 -position per deck rotary switch is the unit's main switch. The pole of each deck on this switch is connected to a slide switch (see Fig. 4A). Each of the nine other positions is wired into

switch flicked lights: this is the machine's move. If you wish to modify the machine so that it makes its move automatically (without your flicking slide switches), add another phenolic deck section to the nine-deck switch and wire the 10th position of this deck directly to bulb nine, bypassing switch nine; the pole of this added deck goes directly to battery. With a 10th deck added, the machine will make its first move to the bulb of square nine automatically.
The single pole "off" plus four-position switch on the back panel is the "Exception" switch. The main circuit of the Tic-Tac-Toe is wired to reply

MATERIALS LIST-ELECTRONIC TIC-TAC-TOE
No. Description
9 Non-shorting, one pole, 2-11* pos. per pole, phenolic sections (Allied 35 B 085).
1 Shaft (9 sections) and index (30°) assembly (Allited 35 B 094).
1 two gang, 4 pole, 4** pos. per pole, noll-shorting, switch (Allied 34 B 257).
9 SPST slide switches (Allied 34 B 422).
9 miniature screw pilot light sockets with socket arms (Allieit 52 E 410).
9 miniature screw lamps-GE222 (Allied 52 E 330).
1 non-shortino, one pole, 5 pos. switch (Allied 34 B 350).
1 wood chassis (see text)
$211 / 2 \cdot v .935 \mathrm{C}$ dry cells.
wire, solder, unmarked dial, dial plates

* Only 10 pos. needed
** Allied sw. is 5 pos.-one pos. not needed
the circuit of one of the nine Tic-Tac-Toe squares.
Either you or the machine can make the first move in a game. If you are going to make the first move select a square, turn the rotary switch to that number and press down the slide switch.

Machine's Turn First. If the machine is to make the first move, turn the rotary switch to the 10th position (which you can label " M " on the dial plate of the rotary switch). Then flick the slide switches until a bulb in the same square as a

4 C
"MISTAKE" SWITCH
to logical moves. If you fail to play logically, it will occasionally happen that the machine will attempt to reply to such a move in a square already occupied. If this should occur-and such occasions are rare-flip the "Exception" switch to a different position. (If you have played in square 7, and need to use this switch, turn it directly to 4.)

The "Exception" switch is wired as shown in Fig. 4B. Its "exceptions" are for squares 8, 6, 4 and 2 for $1,2,3$ and 4 . For example, suppose you are occupying squares 1 and 7 , the machine squares 8 and 9 . Your logical move would be to square 4 to block the machine, but you move to square 6 instead. In such an instance, you would have to use the "Exception" switch.

The two-gang, two poles per gang, four positions per pole switch on the front panel (remove this switch's "off" position) is the "Mistake" switch. Without it, a player would be unable to win a game against the machine. It is wired as shown in Fig. 4C. Do not label the dial of this switch-so that you won't become familiar with the machine's mistakes-but occasionally flip it to a different position.

Extra mistakes can be introduced into the machine by modification of its circuitry. A threedeck, two poles per deck, six positions per pole switch, for example, would enable you to introduce six sets of mistakes into the machine's replies.
For the machine as wired in Fig. 4, however, the mistakes are: 1) your play-corner 3, machine's reply-1 to 8 (instead of 2); 2) your play -side 4, machine's reply-1 to 8 (instead of 2), 2 to 3 (instead of 1); 3) your play-center 9, machine's reply-5 to 4 (instead of 3); 4) your

BULE AND SLIDE SW SChEMATIC (WIRING OF SLIDE SW $\neq 2,3,4,5,6$, AND 9 IS DONE IN THE SAME MANNER; SLIOE SW TO POJE ON ITS DECK AND TO PLUS OF BATTERY.
*as shown one side of each bulb goes to MINUS SIDE OF BATTERY; THE OTHER SIDE OF EACH BULE IS WIRED AS FOLLOWS TO THE 9 DECK, IO POSITION ROTARY SWITCH (POST IS \#1O POSITION):

LDECK		POSITION	LpECK		POSITION
	3	2	6	7	3,4,5
	2	3, 4, 10,		5	7,8,10
	8	3,4, 5,6,7		2	9
	7	8	7	3	9
	9	9		6	1,2,3,4,5
2	3	7.8		8	1,2,10
	1	3,4,10		5	6 ,
	6	9		1	8
3	2	1,5,6,7,8	8	7	1,2,10
	1	2		1	5,6,7
	5	4,9		4	9
	4	5,6,10	9	1	1
	7	9		2	2
4	5	1,2,3,		3	3
	8	9		4	4
	3	5,6,10		5	5
5	4	1,2,3,7,8		6	6
	3	4		7	7
	7.	6		8	8
	6	7,8,10		$9{ }^{2}$	10*
					* 10 **

POS. \#1O IS MACHINE'S TURN.

* SEE TEXT: MACHINE S TURN FIRST
(NOT AUTOMATIC)
* * SEE TEXT: mAChine'S tURN FIRST (AUTOMATIC)
play-corner 5, machine's reply-2 to 3 (instead of 4).
"Your play" indicates your first move. For example, the perfect reply to your moving first into square 4 , then into square 1 (as in the second example above) would be square 2; but instead of this move, the machine mistakenly replies in square 8-and thus allows you to retain some vestige of self-respect. But, then, if you should lose too often in spite of this modification to handicap the machine, remember-you built the device, and you have only yourself to blame.

JUNIOR-SIZE RRCORD PLAYR

THOUGH it won't reproduce sound quite so faithfully as a $\$ 400$ hi-fi radio-phonograph combination, this cigar box record player will deliver plenty of volume for the small one to play his favorite records by, and the quality of that

Mostly for junior, this small record player has a minimum of elrcuit components compacly encased in a elgar box.
bolt's nut just enough so that the arm in the swivel swings freely. Then solder the nut to the bolt so that it will not loosen in use.

Wire as indicated in Fig. 3, connecting one side of the primary of a universal output transformer to the collector of the transistor, the center-tap to the resistor and back through the D.P.S.T. slide switch to the batteries.

There is no special way that the turntable motor, battery, circuit components and speaker should be mounted inside the cigar box, but the layout shown in Fig. 2 works well. Cover the opening for the speaker in the lid of the cigar box with grille screen and cloth, and after the unit is completed, nail the lid tightly shut so that there will be no danger of a child investigating the house-line connections to the turntable and switch.

This small phono has no volume control and volume is as good as that delivered by any onetube phono.

A CK722 transistor, driven by an L12 crystal pickup, provides audio amplification, a 10 mfd capacitor isolates the pickup arm, the base return resistor is 220,000 ohms-a minimum of circuit components for the amplifier itself. The pickup arm (see Fig. 1) is a 1×11-in piece of $1 / 4$-in. plywood fastened to a home-made, scrapmetal swivel, with the crystal cartridge bolted into place at the opposite end of the arm. Drill a hole at the bottom of the swivel's U-shape, insert a bolt through swivel and box, place a large washer top and bottom and then tighten the

Underside of lid shows location of circuit components and turntable motor. Line cord carrying house voltage enters through grommet in back of box.

MATERIALS LIST-JUNIOR-SIZE RECORD PLAYER
No.

Destription

1 erystal pickup (Ll2 Astatic)
$110 \mathrm{mfd}, 25$ v. paper capacitor
1 220,000 ohm, 1/2-watt resistor
universal output transformer (Merit A2900)

No.
1 CK722 transistor \&Raytheon)

1. D.P.S.T. slide switch

78 rpm turntable
$14^{\prime \prime}$, permanent magnet speaker

Miscellaneous screws, nuts, bolts; 6 ' line cord;
empty cigar box; orille screen and cloth; 1-15
v. battery.
ordinarily its volume will not be disturbingly loud. But by changing the size of the 220 K ohm resistor the volume and tone quality can be varied. Before experimenting with such a change, however. insert a 0 to 10 ma meter in series with the battery so that the transistor will not be damaged. The transistor should never pull over 5 ma; with the fixed value of resistance given in Fig. 3 and the Materials List, transistor current is slightly over 2 mills. Be sure to observe correct battery polarity.

BATTERIES FOR ELECTRONIC APPLICATIONS

This list contains all batteries in general use. Those not listed are special types not usually stocked by electronic supply shops. (Hearing aid type batteries are included, however, since many small radios use them.)

$\begin{aligned} & \hline \text { RCA } \\ & \text { Type } \end{aligned}$	Volts	Size	Wt. Ea. Lbs.	Interchangeabls with	
				Burgess	Ever eady
VS036	1	$13 / 10 \times 23 / 8$	602.	2 R	
VS004	11/2	$25 / 6 \times 25 / 8 \times 41 / 44^{4}$		$4 F$	742
VS073	11/2	\% $6 \times 11 / 5^{\circ}$	202.		
VS238	$11 /$	$123 / 4 \times 41 / 8$	702.		
V S069	11/2		$3 / 6$	2 D	720
V S072	412	$3^{15} 56 \times 130102^{15} 10$	1	D3	726
VS067	41/2	$4 \times 13 / 8 \times 41^{\prime \prime}$	1	F3	736
VS009	6		11/4	F4P1	744
VS068	6		$1 /$	24	724
VS065	71/8	$256 \times 2 \times 31 / 10^{\circ}$	13.	C5	717
PORTABLE "B" BATTERIES					
VS084	221/2	$11 / 4 x^{8} / 8 \times 1{ }^{23}$	202.	415	412
VS085	30	$11 / 5 x^{3} / 8 \times{ }^{17} / 5^{\prime \prime}$	202.	U20	413
VS013	45	39 $6 \times 11 / 10 \times 51 /{ }^{\prime \prime}$	2	M30	482
VS014	45	$37 / 6 \times 21 / 4 \times 496$	13/4	A30	
VS015	45	$3 \times 21 / 84^{*}$	11/2	230	738
VS055	45	$2^{21} \times 2 x^{11} \leq x^{31} / 6{ }^{\prime \prime}$	$8 / 4$	$\times \times 30$	455
VSO16	671/2	$2535 \times 1+1 / 5 \times 33 / 6$	1	XX45	467
VS216	671/2	$115 \times 1 \times 57^{17} 6^{\circ}$	1		
VS217	75		1		
VS090	90	$3116 \times 13 / 8 \times 31 / 6$	1	N60	490

PORTABLE "AB" BATTERIES

PORTABLE "AB" BATTERIES (Cont.)

VS064	132-80	$73.62^{3} / 6 \times 3 / 8{ }^{\prime \prime}$	33/6	Ray-O-Vac A864 Philco	
$\begin{aligned} & \text { VS050 } \\ & \text { VS046 } \end{aligned}$	$\begin{aligned} & 6-71 / 2 \pi-75 \\ & 8-75 \end{aligned}$		$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { P364 } \\ & \text { 4TZ60 } \\ & \text { T5250 } \\ & \text { G4B50 } \\ & \text { Z } 2 \text { nith } \end{aligned}$	
VS019	71/2-9-90	$91 / 2 \times 2316 \times 43 / 8$	6	2675 FGAB0	753
V 0507	71/2-9-90	$93 / 8 \times 21 / 5 \times 33 / 4$	4	T5260 Phillco P361	
$\begin{aligned} & \text { VS057W } \\ & \text { VS119 } \end{aligned}$	$\begin{aligned} & 71 / 2-9-90 \\ & 71 / 2-9-90 \end{aligned}$	$\begin{aligned} & 811 / 6 \times 2^{2} / 16 \times 3^{3 / 4} \\ & 81 / 4 \times 41 / 2 \times 137 / 8 \end{aligned}$	4	Philco	756
VS038 VS047	$7{ }_{8}{ }^{1}-90$		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	P326 G5A42 G6860	-
				Qenith Z985	
VS058	9-90	$91 / 8 \times 23.14 \times 488^{\prime \prime}$	5	FGA60P Zenith	
				2909	
INDUSTRIAL BATTERIES					
VS034	11/2	${ }^{87} 6 \times 2^{2}$	202.	2	815
VS106	$11 /$	$2^{11} 16 x x^{11}=x x^{3}=10^{\prime \prime}$	115		
VS006S	11/2	$25 / 8 \times 6^{\circ}$	$21 / 2$	2370BP	6
VS130	1120-3-41/2	$3^{1516 \times 1} 8 \times 3^{\circ}$	1	23708 P	7617
V 5029	11/2-7/2	$3^{11 / 6 \times 7}{ }^{7} \times{ }^{31 /}$		5156SC	778
\checkmark S028	41/2	$2 \frac{1}{8} \times 17 / 6 \times 23 / 8$	12	5360	781
VS040S	6		13/4	F48P	
VS102	221/2	$3 \mathrm{~F} \times 21 / 8 \times 2^{3 / 4}$	11/4	4155	763
VS112	221/8-45	4) $8 \times 23 / 88^{57 / 4}$	31/4	5308	762 S

Batteries iisted can be purchased at your local electronic supply shop or from the manufacturers: Burgess- The Burgess Battery Co., Dept. SM, Freeport. III. Eveready-National Carbon Co., Eveready Div., Dept. SM, 30 E. 42 nd St.
New York 17, N. Y. RCA-Radio Corp. of America, RCA Bldg., Dept. SM, 30 Rockefeller Plaza, Now York 20, N. Y.

\section*{Tester for Dry Cells

\section*{Reliable voltage tester for dry cells

Reliable voltage tester for dry cells tests with or without load, before and after use

Right, this tester for dry cells quickly determines their condition. Headings are taken at both no load and with α resistance load. A good cell should test about s on this milliammeter at no load.

Below, pressing the button connects a resistor across the baftery and in this case a severe voliage drop is shown, indicating a poor cell, since a good one only gives a drop of about 1 or 2 divisions on the meter. The milliammeter is serving as a voltage indicator, with a connected series resistance inside the cabinet.

cells before selling them to a customer by touching their contacts to spring clips to see if a small lamp lights. This is far from a satisfactory test as it does not determine the true condition of the cells.
Dry cells should give 1.5-1.55 volts when new, gradually falling to about 1.2 volts, at which voltage they may remain for quite some time. As current is delivered, this voltage falls

PFYOU have ever received poor service from a newly-purchased dry cell, or your flashlight or flashgun refused to operate because of dead cells when you were far from a dealer, this project is for you. This handy tester (Fig. 1A), will prove invaluablefor checking the voltage of the cells, with or without a load, before or after use. Some stores merely test

Use a circle cutter or similar tool in the drill press to make opening in metal cabinet to fit meter. Fix a wood block inside and clamp the piece securely.
still further until a point is reached where they are no longer useful.

The meter used here (primarily because it is easily obtainable in surplus stores) is a 0-1 d-c milliammeter, with a $2000 \mathrm{ohm}, 1 / 2$-watt resistor in series which serves as a voltmeter. Since a fresh cell indicated exactly .8 on this meter, this reading was used as a voltage standard for good cells. If a d-c voltmeter is used (without the 2000 ohm, $1 / 2$-watt resistor), a good cell will register about 1.5 volts.

In operation, cells are placed one at a time under the spring clip that gives the proper spacing from the contact strip attached to top of cabi-

Wire connections inside the cabinet are very simple. with two resistors required as shown.

Attach spring torminal clips loosely to kack panel with short $4-40$ serews and nuts, and wire clips together as shown. Carry the wire through a drilled hole to other side.
net. The cells accommodated by this tester are D, C, Z and No. 7, size designations used by Burgess and some other manufacturers. In general, these cells fit various flashlights including penlights and are used in flashgun equipment and in a number of laboratory and test equipment instruments.

The photoflash (D) cell shown in Fig. 1B shows about .7 on the meter or two divisions below the .8 standard for a good cell. "An accurate voltmeter would show this value as about 1.4 volts. To find out if this cell is still usable, press the button at the left of the meter as shown in Fig. 1A. This places a load of 8.2 ohms across the battery. Take a quick reading and release push button immediately, since the load applied in this manner could run the cell down if applied for a prolonged period. With button depressed, the meter shows a drop to .45 on the scale, which indicates that the cell is in poor condition and should be discarded. In general, a drop of only one or two divisions on the scale is all that should be indicated for a usable cell.

Before placing cells in position on the tester see that the bottom of the zinc cell is clean and
the outer paper casing is up a short distance from the lower edge so that good contact with the copper strip. will be assured.
First step in building tester is to cut out the large opening in the purchased metal cabinet for the meter (Figs. 2 and 3). Next, cut bottom contact strip from sheet copper, clean up the piece thoroughly with fine sandpaper and attach it to the top of the cabinet with 4-40 screws and nuts through drilled holes (Fig. 2). Also drill holes at the edge of the meter opening for attaching meter tand a $3 / 8 \mathrm{in}$. dia. hole to the left of the meter opening for the push-button switch. Attach meter with $4-40$ screws and nuts, insert pushswitch and tighten nut on switch neck.
Cut back panel from a piece of $3 / 16$ in. birch plywood, bakelite or hardboard (Fig. 2), and sand carefully. Drill holes as indicated and apply two coats of dull black enamel.
Form spring contact clips from phosphor bronze or hard brass and attach to back panel with $4-40$ screws and nuts, with nuts loosely in place. Connect clips together at the back side with \#20 insulated wire, bared for a length rep-
resenting the spacing of the clips and attached under the $4-40$ nuts. Carry the insulated portion of the wire through $1 / 8 \mathrm{in}$. dia. hole bored in panel to inside of cabinet (Fig. 4). Tighten screws to make firm contact with wire at back.

Complete wiring of components (Figs. 5 and 6), attaching a two-terminal strip under the nut of the top meter screw and connecting a 2000 ohm, $1 / 2$-watt resistor across the terminals. Solder the wires going to these terminals in place. An $8.2 \mathrm{ohm}, 1$-watt load resistor connects from one side of the push-button switch to the terminal where the lead coming from the four contact clips is attached, which puts this resistor across the cells when the button is pressed. Attach the grourd lead under one of the nuts used to secure the contact strip to cabinet.
The final step is to attach the board to the back of the cabinet with $4-40$ screws (Fig. 2) in holes drilled and tapped in the cabinet edge. Take a no-load reading on the completed tester, using a new fresh cell, and glue a pointer cut from green paper to glass or dial to indicate this standard for future readings.

Rule Double's as Antenna

- A flexible steel rule, connected to the antenna lead of a small radio will improve reception in certain areas when used as a wand aerial. It may be extended to about 30 in . with stability and can be placed at the rear of the cabinet. A small alligator clamp or paper clip soldered to the lead from the set provides a handy removable connection.-R. L. Hay.

Ventilate Your TV Set

- Television sets develop a lot of heat and sometimes the only provision for ventilation is a series of holes punched in the back panel. Continued overheating can short-
 en the life of those costly television tubes.
To get more ventilation, replace the panel with a simple frame covered with plastic screen such as is shown above.-W. H. McClay.

Gee All he Sound You Pay for widit This Fidelity Amplifier

FIDELITY
AMPLIFIER
SPECIFICATIONS

Full range Bass and Treble controls Self-balancing phase-inverter system
Beam power push-pull output with inverse feedback
Multi-impedance output transformer
Built-in pre-amplifier for magnetic and reluctance pickups
FREQUENCY RESPONSE: $\pm 1.5 \mathrm{db}$. from 20-20,000 eps at 2 watt output
DISTORTION: Less than 2% at 2 watts OUTPUT: Maximum 10 watts
POWER REQUIREMENTS: 70 watts on $105 \cdot 125 \mathrm{v}$., 60 cy . line.

HIGH-FIDELITY amplifiers bring out the best in present-day 33 and 45 rpm phonograph records. And a lot of "best" is built into these reeords. Phono pick-ups, and the right combination of speakers also add to the quality of sound reproduction, but these are packaged items that the audiophile should select himself.
This 10 -watt amplifier (based on the Arkay brand A-12 Hi-Fi Kit), has all the features and the appearance of commercially made equipment and can be built in a few hours. Unlike many types of electronic apparatus, it does not require exacting circuit adjustments once wiring has been completed. If all connections have been made correctly, this amplifier is ready to go as soon as you connect a record player or radio tuner to the phono input jacks, and a PM speaker or speakers to the output terminals.
The pre-punched chassis measures $111 / 4$ in. long, $61 / 4 \mathrm{in}$. wide, and $21 / 4 \mathrm{in}$. high. The top of the chassis is punched with six $1-\mathrm{in}$. holes for mounting five octal pin tube sockets, and a threesection electrolytic filter capacitor. A rectangular opening, $23 / 4$ by $2-\mathrm{in}$. is provided for the power transformer.
Selector Switch, Volume, Bass, and Treble (line switch) controls mount on the front apron of the chassis (Fig. 1). The $3 / 8-\mathrm{in}$. mounting holes for them are spaced $21 / 4-\mathrm{in}$. apart, and located so that the escutcheon plate holes will coincide with them. The rear apron of the chassis

For quality sound reproduction, build this 10 -watt, true-fidelity amplifier

By THOMAS A. BLANCHARD

Completed amplifier. Controls, left to right, are: Selector Switch, Volume, Bass, and Treble (line switch) controls. Escutcheon plate may be removed from chassis and mounted on cabinet if unit is enclosed. Parts shown are: A) power transformer; B) electrolytic capacitor; C) 5Y3GT rectifier; D) 6SC7 dual pre-amplifier; E) 6SLF Interstage amplifier and phase inverter: F \& G) 6 V6 beam power push-pull output amplitiers.
contains four $3 / 8$-in. holes, three of them for phono jacks and one for the line cord rubber grommet. The phono motor receptacle's size and shape will determine hole or slot size for it. The Na-ald receptacle shown in Fig. 3 fits the prepunched $3 / 8$ by $3 / 4-\mathrm{in}$. opening. The final chassis opening is a 2 by $1 / 2-\mathrm{in}$. slot on the rear apron of the chassis for the output terminal strip.

The first 'step in assembling the amplifier is to mount all screw-down components to the chassis. The power transformer comes with its own nuts and bolts. The nuts are removed, then used to bolt the unit securely to the chassis so that the transformer's laminations will not chatter when power is applied. Tube sockets are mounted with $6-32 \times 1 / 4$-in. machine screws and nuts as are all other components except the phono jacks. For these, $4-40 \times 3 / 8-\mathrm{in}$. screws and nuts are employed.

The advantage of using the saddle type tube
power transformer: 540 V center-tapped @ 120 ma. rectifier ki. 5 V @ 3 amps triode-pentode fil. 6.3 V @ 3.5 amps
(Stancor $\# 8405$) (Stancor \#8405)
nush-pull audio output transformer. 10,000 ohm center-
tapoed primary
tapped primary. Secondary tapped at 4.8 and 16 ohms (Todd \#1595 or Stancor \#A-3304)
sheet metal chassis with pane! cover. Size: $111 / 4 \times 61 / 4 \times 21 / 4$ in.
2-pole, multi-position non-shorting selector switch (Mal.
lory $\# 3226 \mathrm{~J})$ lory \#3226J)
octal molded sockets (Amphenol \#168.015 saddle type)
TLLTTT tie Strip (5 insulated tie point)
6 tie Strip (1 insulated tie point)
6 ft . fixture cord and olug
RCA type phono jacks
plastic knobs for $1 / 4 \cdot \mathrm{in}$. shaft
escutcheon plate
ft. shielded single conductor lead
ft . plastic insulated \#20 hook-up wire
AC receptacie
4-screw bakelite terminal strip TUBES
$65 C 7$ Hi.Mu Twin Triode
6SL7GT Hi-Mu Twin Trinde
6V6G7, Beam Power Amplifiers
5Y3GT Full Wave Rectifier

RESISTORS

500 K potentiometer with line switch (Treble Control)
500 K potentiometer (Volume and Bass controls)
$10 \mathrm{ohm}, 1 / 2$ watt composition resistor
$2200 \mathrm{hm}, 1 / 2$ watt composition resistor
$220 \mathrm{ohm}, 5$ watt, wire-wound resistor
-HIIFI AMPLIFIER
$1 \quad 2200$ ohm, $1 / 2$ watt composition resistor
$22 \mathrm{~K}, 1 / 2$ watt composition resistor
$47 \mathrm{~K}, 1 / 2$ watt composition resistors
47 K , 1 watt composition resistor
$100 \mathrm{~K}, 1 / 2$ watt composition resistors
$470 \mathrm{~K} / 2$ watt resistors
$370 \mathrm{~K} 1 / 2$ watt resistors
3.3 megohm, $1 / 2$ watt resistors

10 megohm, $1 / 2$ watt resistor
$5100 \mathrm{ohm}, 2$ watt composition resistor
3-section electrolytic can can iras
-section electrolytic can capacitor. $10 \mathrm{mf}, 400 \mathrm{DC}$ wh.
$-\mathrm{l} .100 \mathrm{mf}$.400 DC Alternates: "Mallory FP 378 . V. $/ 80 \mathrm{mf} ., 350 \mathrm{DC}$ wk. V. Alternates: Mallory FP378 or Sprague TVL3792
$.02 \mathrm{mf} .400 \mathrm{DC} ., 400 \mathrm{DC}$ wh. V. molded paper capacitors
.02 mf . 400 DC wk. V. molded paper capacitor
.0047 or .005 mf ., 400 DC wk. V. molded paper capacitors
.006 mf ., 400 DC wh. V. molded paper capacitor
$.001 \mathrm{mf} ., 400$ DC wk. V. molded paper capacitors
250 mmf . mica or ceramic capacitor HARDWARE
$6.32 \times 1 / 4 \mathrm{in}$. machine screws and nuts (for attaching sockets, mounting strips, etc.)
$4.40 \times 3 / 8$ in. machine screws and nuts
\#6 pround lug
$3 / 8 \mathrm{in}$. rubber orommet
\# 6 self-tapping screws
The complete Arkay $\mathrm{Hi}-\mathrm{Fi}$ Amplifier Kit, containing all parts listed above, can be obtained from Rose Electronics, Inc., 76 Vesey St., New York 7, N. Y. The price is $\$ 22.95$, plus pastage on 12
Ibs. to your zone.
sockets specified in the Materials List is that each socket has four grounding lugs in addition to its eight pin lugs. Thus, where a component returns to ground, there is always a ground lug handyno need to drill holes for mounting individual lugs, or soldering leads to the stubborn chassis steel. Since the sockets do serve this dual purpose, they must be screwed down securely to a chassis whose underside is either bare metal or cadmium plated-it cannot be painted. Watch tube pin connections carefully. Mount all sockets so that the keyways face toward the controls on the front apron of the chassis. Since a number of components are clustered around the 6SL7GT socket, a tie-strip with five insulated lugs and mounting bracket is secured to the rear socket screw.
With basic components mounted (Fig. 2), begin wiring by connecting the power transformer and audio output transformer leads. The leads of these units are color-coded to identify the function of individual windings or taps. A printed key to the color coding comes with them.
When wiring in capacitors and resistors, make doubly sure that you have the right value in the right place. It is easy to insert .005 mf . where .05 mf . belongs, or a 47 K resistor where a 470 K is called for. Many leads are drawn much longer in the Pictorial Wiring Diagram than you will want them in actual practice. And pigtail leads on new resistors and capacitors average 2 -in. long, which is longer than you will ordinarily want them. Excess wire should, of course, be clipped off components before soldering into the circuit. Arrange long leads from transformer and circuitry that are long so that they lay close to the chassis. Figure 4 shows how the wiring may be done in actual practice.
You will find it most practical to insert all solid leads first, using \#20 plastic covered hopk-

Bottom view of chassis. Sockets, electrolytic capacitor, power transformer and conirols are installed prior to wiring-in maller components. Leads from output transformer. (center) and power transformer (right) are wired in first.
up wire. Although the wiring appears simple, the leads from the phono input jacks to the Selector Switch, and the wiring from the latter into the circuit, can be tricky, so be sure to proceed carefully.

Each phono jack carriess a sensitive grid lẹad,

Amplifier with wiring completed.
and these leads must be shielded so that they won't pick up 60 -cycle hum. The Arkay kit includes a supply of single conductor shielded wire for this wiring operation. The wire is like that used to connect an auto radio to its whip antenna. To install, measure off the length needed, then unravel the outer wire braid until about $1 / 2-\mathrm{in}$. of the inner wire's insulation is exposed. Now strip off just enough insulation to expose the center wire. Solder the inner wire to the center jack lug and terminate the opposite stripped end at its respective circuit point. Solder the outer braid to the chassis as indicated by black dots in Fig. 3. Be sure that none of the fine braid strands are accidentally left contacting the inner lead. While no harm will be done to the amplifier if they are, it will not work if any one of the input circuits is shorted by a stray strand of braid wire. Note that the smaller phono jack lugs next to the mounting screws are not visibly connected. They are self grounding when mounted to the metal chassis.
The purpose of the Selector Switch is to allow the amplifier to handle a crystal, magnetic or reluctance phono pick-up, as well as FM or AM radio tuners, with all three permanently plugged into the amplifier. Moreover, a separate preamplifier is not required for reluctance pick-ups. This is built right into this amplifier. In addition, where pick-up manufacturers supply instructions for installation of auxiliary equalizer networks (other than the conventional types already in-

cluded here) spare lugs 4 and 5 of switch section A, and 4 and 5 of section B will accommodate these features. Note, too, that lugs 1 and 2 of switch section A are not used at any time.
With wiring completed, the amplifier is ready for testing. Since the rectifier 5 Y3GT has a 5 -volt filament (see Fig. 5), don't mix it up with the 6.3 -volt filament tubes which occupy the sockets in a row parallel to the control panel. Insert the 6.3 -volt tubes into their sockets first. Viewing chassis from the front (Fig. 1) they are, left to right: 6 SC 7 metal dual preamplifier (D); 6SL7GT interstage amplifier and phase inverter (E); and two 6V6GT beam power push-pull output amplifiers (F \& G). The $5 Y 3 G T$ rectifier (C) is installed in the socket behind the electrolytic capacitor can.
A single speaker, or combination of speakers (with suitable cross-over network) may be attached to the output terminal strip. Viewed from the rear, the lefthand lug screw on this strip is common. Connect one speaker voice coil lead to this terminal. The other speaker lead is connected to the second lug screw from the left if the voice coil has 4 ohms resistance; to the third screw if the coil has 8 ohms; the fourth screw if it has 16 ohms.
If you have an automatic or manual record player, insert the motor cord in the amplifier's phono motor receptacle, connect pickup to appropriate phono jack, set Selector Switch to proper position, plug in the line cord and turn on power by rotating Treble Control.
All controls on the front panel are provided with $1 / 4-\mathrm{in}$. shafts, 1 -in. long. If you desire to leave the amplifier exposed, these shafts can be cut down to $3 / 8-\mathrm{in}$., giving a somewhat neater
effect. On the other hand, if you plan to install the amplifier in a console later on, leave the shafts full length. The escutcheon plate, which has control designations, may be removed from the chassis by unscrewing the control mounting nuts. Holes in corners of control plate allow it to be attached to a console with \#4 wood screws.

Keeping Tabs On Weak Tubes

- With do-it-yourself TV tube checkers installed in many large markets, drug stores and other convenient locations, it is easy for the average set
 owner to save most of his set upkeep by finding his own faulty tubes. Before testing your TV tubes, put a piece of adhesive tape on each tube, being careful not to cover the identification Write the condition of each tube on the tape as it is checked. In this way 'you can keep track of weak "spares" that may get shuffled back into the circuit when a tube fails.-W. H. McClay.

Kink for Soldered Joints

- When soldering wires and cables in a radio receiver, immediately after the iron is removed from the soldered joint, paint the joint with lacquer-thinner, using a small brush. The rosin flux will evaporate immediately, leaving a clean joint. Using this kink, a cold-soldered joint will immediately show up, preventing future trouble. -Herman R. Wallin.

Portable Hi-Fi Record Player

By ELMA WALTNER

in this portable phonograph are quite good, and relatively low in cost (the whole project, in fact, will run about $\$ 10$ for cabinet materials, and roughly $\$ 100$ for $\mathrm{Hi}-\mathrm{Fi}$ components, depending on where you buy) You can't, of course, get perfect reproduction with any table top project, since the small size restricts both the tricks you can play with speakers, and the space you can use for sound-boarding layout. But we did find that cabinet resonance can be effectively

F you like hi-fi, you'll appreciate this phonograph. Its portable, table-top size makes it possible to enjoy superb orthophonic listening in any room of the house, or outdoors wherever a cord for supplying current will reach or can be plugged in. The hi-fi components used
damped out by a generous use of fiber glass insulation.

Be sure to cut the matching pieces for both the box walls and lids' (Fig. 2) to length at the same time. This will give you an exact match, and a well fitting lid and box unit The speaker open-

rlan yiew of case
MATERIALS LIST-PORTABLE
ing is cut in one of the $191 / 2-\mathrm{in}$. long box pieces (C in Fig. 3). After dressing these cut parts, check the lid and box fit, and then assemble the box and lid with brads and glue.
Next cut the motor-board support strips (A in Fig. 3) and the cross motor-board support strip (which is the inner wall of the record changer spindle compartment) of $3 / 4$-in pine stock. Use countersunk flathead wood screws to hold the three strips in place in the bottom of the box.

The speaker compartment pieces are $1 / 4-\mathrm{in}$. ply-

Aiter mounting speaker on its board, test fit by slipping It lato speaker compartment.
wood except for the two corner supports which are strips of $3 / 4-\mathrm{in}$. square pine stock, and the baffle board supports which are $1 / 2$-in. stock (C in Fig. 3). Assemble the speaker compartment in the box with flathead wood screws.
Cut the amplifier support strips from $3 / 4$-in. pine stock, and the amplifier hold-back strips of $1 / 4-\mathrm{in}$. plywood. Fasten these in place with flathead wood screws.

Cut the speaker mounting board of $1 / 4-\mathrm{in}$. plywood. Jigsaw out the circular speaker opening (Fig. 2) from $1 / 4$-in plywood and mount the speaker on its board with flathead stove bolts, passing the bolts through holes drilled through the speaker board, then through the mounting holes in the speaker frame. Countersink for the stove bolt heads so they will be flush with the front of the speaker mounting board.

Slip the speaker, mounted on its board, into the speaker compartment to be sure it fits (Fig. 5). Fit the speaker baffle board (Fig. 2) down over the speaker and fasten to the slant baffle board support strips with small flathead wood screws (Fig. 6). After fitting the speaker in place
to check the assembly, dis-assemble again, removing baffle board and speaker from the compartment.

Unscrew the nuts from the bolts holding speaker to speaker board and lift off the speaker, but leave stove bolts in place on speaker mounting board. Return speaker to its packing carton until you arelready for final assembly. Give front of speaker mounting board a coat of flat black paint.

Next, test fit the amplifier in place in its compartment (B in Fig. 3). Note that support strips on which amplifier rests, also hold amplifier up

Trying out it of amplifier in its compartment. Batile board in place over speaker.
flush with the top of the box, at the same time creating a compartment below the amplifier for the plugs and cords that connect amplifier to speaker and changer. Test fit both the amplifier back board and amplifier cover board in place. Then disassemble amplifier cover and back board, lift out amplifier and return it to its shipping carton.

The motor board (Fig. 2) is cut from $3 / 4$-in. birch stock. Test fit the board on its support strips. The cross support strip forming the inner wall of changer spindle compartment, extends about $1 / 4 \mathrm{in}$. beyond edge of motor board, and the compartment cover projects over this extension. Drill holes through motor board so it may be

Attaching fiber glass insulation to insides of speaker compartment with stapler-tacker. Insulation on sides extends only up to baffle board supports.
screwed to support strips at the four corners. Then remove motor board from box and jigsaw out an opening in its center to match the mounting diagram furnished with your record changer.
Cut the handle reinforcing board (Fig. 2) of $3 / 4-\mathrm{in}$. birch stock and fasten to box side with wood screws screwed through from outside box. Also locate two screws to engage the board at the edge where it fits into the corner of the box.

Cut the changer spindle compartment cover of $1 / 4$-in. birch-faced plywood (Fig. 2). Also cut two $21 / 4-\mathrm{m}$. lengths of $3 / 4-\mathrm{in}$. square stock and glue these to the motor board support strips under the cover. These blocks hold the compartment cover up flush with the motor board. Hinge this cover to handle support board with brass hinges.

For covering the box, buy plastic upholstery material with a fabric back. Cut a 201/2-in. square piece for the box bottom. Spread a good grade of liquid glue evenly on the bottom of the box. Lay the covering square on the bottom so that the material extends $1 / 2$ in. beyond the bottom on all four sides. Then smooth and roll the upholstery material to the wood for a good bond.

Notch out the four corners as shown where they extend beyond the bottom, then glue material to four sides of box, making sure corners

Covering lid of record player with plastic insulating materlal.
come together. Before glue hardens completely, use a straight edge ruler and razor blade or sharp pointed knife to trim material to a straight edge around the four box sides.

Cut the material for covering the box sides in strips wide enough to extend $3 / 4$ in. beyond top edge of box when it is fitted against cut edge of covering material glued to box sides. Spread glue on one side at a time and fit and roll the edge of the covering material snugly against the gluedon material. Repeat this procedure around all four sides of the box. Miter the corners and bring covering material over top edges and down against the inside of the box. On the section faced by the birch handle reinforcing board, however, glue covering only over the top plywood edge of the board.

When glue has set but is still tacky, again use straight edge razor to cut a clean edge on the covering material. Line inside of box with a contrasting plastic material, running the lining down to top of the motor board support strips. The birch handle reinforcing board, and the inside of the amplifier and speaker compartments are all left unlined. Cover and line the lid as you did the box (Fig. 7).

Also cover the speaker and amplifier cover boards with the material that is used for lining the case, carrying the covering material over both

Placing changer, mounted on the motor board, down onto motor board support strips.
the outside edges of the board and the inside edges of the cutout holes, and gluing it so it laps over onto the back about $1 / 4 \mathrm{in}$. You'll have to miter the corners, of course. Cut pieces of plastic grille cloth and fasten to the back of the boards to cover the openings, using either screen cloth staples or a regular tacker-stapler fitted with wire staples. Cut a piece of grille cloth the same size as the speaker mounting board. After making sure stove bolts used for mounting speaker are in place, lay the cloth over the opening and fasten to the front side of the board with screen staples or wire staples.

Glue a piece of the plastic used for the lining, to the amplifier back board. Cut out the oblong opening but leave plastic covering material over the upright opening. Tack a piece of grille cloth, with raw edges folded under, to the outside of the
opening. (The amplifier tubes, which give off considerable heat, would be too close to grille cloth fastened to the inside).

Finish motor board, compartment cover and handle reinforcing board with several coats of shellac or other preferred finish. Allow to dry, then wax. Attach handle to outside of case (Fig. 2) using screws that drive nearly through box and handle reinforcing board. Fit lid in place and attach three safety clasp suitcase-type fasteners,

Fitting amplifier compartment back and cover in place. Below is the finished record player.
centering them on the front and two sides of the record player where the lid meets the base. Hinge the, fourth side of the lid to the box using three evenly spaced stop hinges.

Fasten pieces of spun fiber glass acoustic insulation to the bottom, back and sides (below the baffle board supports) of the speaker compartment with a stapler-tacker (Fig. 8). Mount the speaker on the back of the speaker mounting board and draw up the stove bolt nuts until they are so tight the speaker will not vibrate during playing. Slip mounted speaker into its compartment and fasten speaker board to box frame with four nickel plated, roundhead machine screws passed through matching holes in the box and speaker mounting board. Draw nuts tight against back of speaker mounting board to eliminate vibration. Fasten baffle board and then speaker compartment cover in place.

Set changer, mounted on its motor board, into its compartment on the motor board support strips (Fig. 9). Tighten the screws at the four corners of the motor board to secure it to the support strips.

Make the wiring connections from changer to amplifier and amplifier to speaker. Cord passes through a hole cut in the wall between the two compartments. Instructions for making these connections come with the amplifier. Slip amplifier into its compartment with the wires in the open space beneath the amplifier. Slip amplifiey compartment back board into place, then fit cover into position (Fig. 10) and screw down. The outlet plug cord is carried over the top of the box for playing and fitted around the changer when the box is closed for carrying. Spare equipment is stored in the spindle compartment.

The finished sllde wire resistor. This one has a value of 5000 ohms, 200 watts, 2 amperes.

Try Making Slide Wire Resistors

These are just what you need when you are adjusting voltage or creating special loads during testing operations

By HAROLD P. STRAND

sort from a tubular adjustable resistor, or one that is equipped with an adjusting band. These can be purchased in most any radio supply store and many of them are included in surplus equipment. The advantage of a slide wire resistor is that the resistance can be adjustable in very gradual steps by simply sliding the movable unit along the wire to the point desired.

In selecting resistance tubes for this job, remember that two factors are involved-resistance and current carrying capacity. For example, a resistor may have a resistance of 500 ohms, but be able to carry but .2 amperes. If 1 ampere were the value of the current in the circuit, this resistor would quickly overheat and burn out. Therefore, we must provide an assortment of resistances with various cur-

The complete parts of the slide wire resistor are shown on the bench ready for assembly. The sliding piece has been made and the phosphor bronze contact spring is shown herebeing soldered in place.

HAVING an assortment of slide wire resistors on hand for electrical or radio testing is a great advantage. Technicians all use them for adjusting voltage and creating special loads on apparatus they are testing or developing. It is quite simple to make a good resistor of this

A. 8-32 BRA5S FLAT MEAD SCREW.
8. OIS PHOSPHOR BRONZE

humy
USE OHM'S
LAW TO COMPUTE
RESISTANCE VALUE
USED AS A SERIES RESISTOR
rent values, so as to be able to supply one within the limits of the demand. Generally speaking, those of high resistance and low current capacity will be comparatively small tubes, both in length and diameter, and the wire with which they are wound will be of small size. As the current value goes up, larger wire is required and in order to get the specitied resistance on the tube, the latter will have to be both longer and somewhat greater in diameter.

In estimating the required amount of resistance for a given case, Ohm's Law is usually employed$R=\frac{I}{I}$, meaning that resistance equals the voltage divided by the current. Suppose, for example, that the voltage is 110 and .5 ampere is the current desired in the circuit, how much resistance will be required? Dividing 110 by $.5=220$ ohms. Therefore, if a resistance of 220 ohms is connected in iseries on 110 volts, .5 amperes will flow in the circuit. This tells us that a slide wire resistor of at least 220 ohms (preferably a little more to allow for top adjustment) which is capable of carrying .5 amperes, will be required.

On the other hand suppose that we want to know how much current will flow in the circuit, if a resistance of some value is connected in. Ohm's Law is again employed- $I=\frac{E}{R}$, or dividing the voltage by the resistance, gives us the current value. On this basis, as an example, if a resistance of 150 ohms is used on 110 volts, the current will be .733. Again, when selecting the resistance to be used, make sure it will carry at least this current value, and preferably more so it will run cooler. These resistance tubes can be had in a large variety of, values in both resistance and current. They are also often rated in watts, which shows the watt limit that can be dissipated without damage. Watt values are found by the formula $I^{\prime \prime} R$ (the current squared times the resistance). For example, in the previous problem with 110 volts and .5 amperes as known values, .5 times .5 equals .25 multiplied by 220 ohms equals 55 watts. Therefore, in this particular case, the resistor must be rated at 55 watts or better.

To get down to making these slide wires, note that the photos and drawings show all necessary steps. The resistor illustrated is rated at 5000 ohms and 0.2 amperes ${ }_{2,6} 200$ watts. It is a tube about $101 / 2$ inches long and $11 / 8$ inch in diameter. A $1 / 4$ inch steel rod is cut $121 / 4$ inches long and threaded at both ends for $1 / 4$ inch-20. Two steel brackets are also made as indicated in the drawing and photos. The rod passes through drilled holes in these brackets and pieces of $3 / 8$ inch bakelite, which also have holes drilled to receive the rod, are made and fitted as shown. With the aid of two $1 / 4$ inch nuts and washers, the assembly is tightly clamped together. If cup shaped or recessed washers are supplied with the tube, these are used in the open ends to center the
rod and make a better job of it.
The slide rod is made from a piece of $1 / 4$ inch square brass rod, drilled at the ends to receive an $8 / 32$ screw at one end and a threaded stud, also $\% 32$, at the other end. These are used in tapped holes in the ends of the Bakelite pieces. Stops are made on the slide rod so the movable unit cannot go beyond the bared section of the wire. These are $6 / 32$ screws fitted in tapped holes in the rod, with their heads cut off. An $\% / 32$ nut and thumb nut from a dry cell are fitted to the threaded stud, so as to form a convenient terminal post for attachment of the lead wire.

Assembly of the resistor is simple. A nut on each end of the tie rod clamps parts together. Final Job is to place square rod in position and secure it with a screw and binding post nuts.

The sliding member is made by taking some thin phosphor bronze and bending it up in the form of a square tube around the rod as a guide. The seam is soldered as shown in one of the photos. A piece of the same material is also used as the wiping spring contact, which is also soldered in place to the square tube. The final job is to solder a flat head $8 / 32$ brass screw to the top center of the tube. Screw an insulated thumb nut or binding post terminal on the screw. Tension on the wire should be positive at every point but should not have excessive pressure, which might damage the fine wires.
Only one end of the resistance will be used, unless the slide wire is to be used as a potentiometer, in which case both ends will be in use. It is a simple matter to either solder or fit suitable terminal posts through the holes for attachment of the leads.
These finished slide wire resistors can be made more stable on the bench, by attaching pieces of $1 / 4$ inch hard asbestos board under the brackets.

Dimensions given in the drawings and some details shown will have to be modified according to the size of the unit under construction. However, the method of converting them will be the same and if carefully done, the result will be well worth the trouble.

Cut Power Interference

- Erect your radio aerial at right angles to telephone and power lines in brder to eliminate interference or static.-I. M. FENn.

SUPER WIDGET

> Want to build a pep-packed pocket set? Here is a simple yet powerful circuit for a one-tube radio that's easy to build, easy to listen to, and easy on the pocketbook

By T. A. BLANCHARD

FOR THE radio experimenter who wants to try his hand at something simple yet exciting, the Super Widget is it! The Super Widget has been designed along straight-forward lines, but our pictorial wiring plan is arranged so that the builder may install the set in a cigarette case, plastic compact, or any other small, non-metallic case. The result is a truly powerful and selective pocket set.
Only six radio components are used. The circuit employs the super-regenerating system working around a tiny Impax coil. This coil is about the size of

MATERIALS LIST-SUPER WIDGET

1200 mmf . compression type capacitator
175 mm . Ceramicon fixed capacitor
120 megohm, $1 / 4$ watt resistor
1 Impax BC band coll assembly
1 7-pin minicture tube socket
2 phone Jacks
2 Bakelite knobs
1 Type 1 T4 Pentode tube
a dime, and $1 / 8$ in. thick. By means of a vernier adjustment knob, the set builds up a remarkable amount of sensitivity and power without any of the usual objections to super-regenerating circuits such as lack of sensitivity, continuous oscillation, whistles, howls, etc. The knob control on the Impax coil serves as both sensitivity and volume control and is free of critical adjustment and noise, as is often the case where potentiometers and condensers are used to control feedback.

To conserve space, a compression type capacitor is used as tuning control. The capacitor has a maximum capacity of about 200 mmf , and when used with the Impax coil, covers the entire broadcast band. As compression capacitors are ordinarily adjusted with a screwdriver, we attached a $1 / 4 \mathrm{in}$. bushing to the screw so that it could be fitted with a small Bakelite knob. Three complete revolutions of the knob cover the broadcast band. The components list is completed with a 20 megohm resistor and 75 mmf . Ceramicon capacitor in the grid circuit. A midget electron tube, a type 1 T 4 pentode, is used in the compact hookup. The original model was assembled on a simple aluminum chassis $13 / 4$ in. wide, $23 / 4 \mathrm{in}$. long and 1 in . high.

The Super Widget obtains power from a $221 / 2$ or 45 volt midget B battery or an ultra-compact Minimax 30 volt cell. An ordinary penlight cell provides $11 / 2$ volt for the tube filament. The antenna lead is soldered in to the circuit. We used a 3 ft . length of thin hook-up wire. Bringing this wire within close
\qquad

Note tuning capacitor (center) and above it tubo sockets and phone jacks.
range of a telephone or other metallic object gave ample pick - up. Greater signal strength may be obtained by connecting a ground wire to the A-B connection on the set.

This unique circuit offers numerous design possibilities. Earphone reception is bell-clear and plenty loud. We suggest that the headphones used * with this set have a 2000 ohm impedances With the proper out-

SUPER WIDGET - SCHEMATIC PLAN put transformer a regular hearing-aid receiver works fine.

In many locations good loudspeaker volume may be expected. This is particularly true if you are located in the vicinity of high-powered radio stations.

Portable Coil Antenna

- Those amusing metal coils that "walk" down the steps make hand'y portable antennas for standard broadcast and/or short-wave receivers. Simply hang the coil from the ceiling to the floor, or stretch it across the room, and when you want to take it down it will snap back into a neat and compact unit.

Slinky (Fig. 1) consists of 70 ft of copperplated metal band about $3 / 32$ in. wide. The coil is about 3 in . wide and stands about $21 / 4 \mathrm{in}$. high.

Fasten a hanger on each end of the coil using short lengths of wire or cord twisted or tied to end loops, so you can hang the coil from hooks or nails.

An alligator clip and a length of wire connect the coil, hung from the ceiling, to your receiver's antenna post. These coils are made of coppercoated spring-steel, and one cost me $85 \hat{y}$ in a dime store,-Arthur Trauffer.

Weather-Resisfant Antenna Coating

- Despite the use of non-rusting elements for outdoor TV antennas, they deteriorate rapidly under exposure to the weather, with such results as pitted contacts at the transmission-line insulator connections and cracked insulators which cause signal losses. Extend the life of your out-

door antenna with a weather-resistant coating obtained by applying a clear plastic spray such as Krylon Crystal Clear. After the antenna has been assembled but before it is mounted on the mast, spray reflector, crossarm mast-section, the twin-lead section which extends from the insulator to the first stand-off insulator, the standoff insulator, bolts, nuts and other important terminals.

The Care of Electric Soldering Irons

MOST home handymen have an investment in one or more soldering irons. Properly used and cared for, an iron will give long years of dependable, efficient service. Improperly used and cared for, it will give weak and imperfect soldered joints and will soon be valueless as a tool. In other words, it pays to talke care of your soldering irons.

Often, a large iron can do a small job; a small iron can never do a large job. Figure 1 shows a variety of irons; Table A gives the uses to which the different sizes of irons are usually put. In addition to using the proper size iron on a job-an iron that will generate and transmit enough heat to insure a good joint-you should remember that it is the tip of the iron that transmits the heat and that, unless the tip is kept properly "tinned," an oxidized crust will form that will impede the flow of heat to the work.

To tin an iron, first see that the tip is smooth and free from pits. If necessary, use a file to recondition the four faces. Then apply solder to the tip (Fig. 2), just before it reaches maximum heat. Rosin-core solder is best for this purpose as it eliminates the necessity of using an external flux.

An assortment of lsons: ratings range from 20 to 135 watts. All have universal shaped tips, or chisel polnts, except the qun-type (right center) which has a shorted turn, alloy-wire tip. Dualrated for 100-135 watts, the gun-type iron le designed for instant-heat electronics work. The pencil fron (lower right) is for use in cramped quarters.

When using the iron, watch the tinning on the tip. If it becomes discolored, dip it into clean water and instantly withdraw it. This will not only expose the bright tin, but also restore the iron to a safe temperature if the discoloration is due to overheating. Tinning may also be cleaned by rubbing the iron on steel wool (Fig. 3); and overheating may be remedied by disconnecting the iron briefly when necessary.

When you're through using an iron, wipe it clean with an oily cloth. This will help prevent corrosion. Never use sal ammoniac (ammonium chloride) to clean a tip; it spreads rapidly and will corrode the rest of the iron. It may also be deposited on the work when doing electrical or electronic soldering and later cause trouble.
Don't abuse your iron by hammering or prying with it. Don't forge the tip; use a file, or grind it, to restore its shape. And don't kink its cord sharply, yank it, twist it, or drag it. A good

TABLE A SOLDERING IRON_

Type	Watt Rating	Length	Weight	Use
Pencil	20.35	7. 8 in.	31/4-8 02.	Quick heat, for short intervals; Small wire soldering in crowded places
Conventional	40.75	$9-12 \mathrm{in}$.	802.61 lb .	General light work (radio or Jewelry solderling)
Conventional	85.100	10.13 in.	20 02.-11/4 lbs.	Common type household and general purpose iron; also for appliance repairs
Conventional	150	11-13 in.	$12 \mathrm{oz}. \cdot 1 \mathrm{l} / 2 \mathrm{lbs}$.	Same as above, but for slightly heavier work
Conventional	200	12.14 in.	1.2 lbs .	Used in shops for medium heavy jobs and III homes for heavy tasks
Conventional	300	12.25 in.	2-3 lbs.	Factory production soldering and any very targe surface soldering
Gun	100-135	10.12 in .	11/2-2 lhs.	Where quick heating is required
Gun	200	20.12 in .	2-21/2 lbs .	Where quick heating is required
Gun	200-250	10-12 in.	2-21/2 libs.	Where quick heating is required, also permits soldering wires directly to large surface (such as radio chassis)

way to protect the cord of an iron is to wind a plastic spiral cover around the end nearest the iron's handle, the end most flexed. Such covers are available at hardware and variety stores.
If the heating element of your iron burns out, obtain a replacement unit from the manufacturer or at a hardware store and make the installation yourself. To remove the defective element from a conventional type iron, slip the handle back on the cord, after loosening it from the metal barrel, and remove the cord wires and the wire leads to the heating element from beneath the threaded screws in the fiber support. Remove the tip (by loosening the set screw) and drive out the small
drift pin in the end section of the barrel. The end section then pulls out, complete with heating element, porcelain insulator and lead-in wires attached (Fig. 4). Reverse the removal procedure to install the new element.
In taking care of the gun-type iron, its tip should also, of course, be kept well tinned. With such guns, overheating should be strictly avoided. Since this type of iron heats in about five seconds there is no need to leave it turned on when not immediately in use. With the dual heat gun type models, the higher ranges should be used as little as possible to prevent overheating of tip and transformer.-H. LeEper.

LEFT

On a new iron, or with an old iron where the tinning has burned oft. tin to clear copper on all four iron faces with flux and solder. Rosin-core solder is used here.

RIGHT

A wad of steel wool forced inside solder spool is useful for tip cleaning while working.

BOTTOM

[^5]
Twin Speakers Improve Fidelity
 F YOU have twin 6 or

I8 in. P.M. type speakers, it's an easy job to connect them in series at their voice coils, and their combined performance will sound very much like one expensive speaker of twice the diameter. The two-speaker combination will, in fact, reproduce any audio signal with less distortion. Costwise, the two small 6 in. P.M. speakers cost about the same as one large 12 in. speaker.

To connect the small speakers in series, first mount them on a single baffle of suitable size (preferably of $1 / 2 \mathrm{in}$. insulating board).

The important thing to consider when connecting the voice coils is their correct polarity with respect to the operation of the cones. They must work in
 phase, that is, both cones must be pulled in and pushed out together, on each impulse of the signal, or vibrate together, rather than have one pull in and the other push out. To do this, use a flashlight cell and 2 clip leads to test the operation of each cone (Fig. 1). With the positive, (top of cell) connected to a certain voice coil terminal, the cone will be pulled in. If you reverse the battery polarity, the cone will be pushed out. Mark the terminal used when the cone is pulled in with positive polarity on that terminal. Do the same thing to the other speaker. It is now a simple job to connect the two voice coils in series (Figs. 2 and 3), connecting a positive to a negative. Solder on long leads for connection to the output transformer! Then double-check by attaching the battery to the long leads, and make sure that both cones pull in and push out together, with a reversal of the battery leads. The two speakers will now operate as a single unit, each taking half the power output, which doubles the capacity of a single speaker of the same size.

For good bass reception, speakers should have a rather flexible cone mounting, since bass is at the lower frequencies where the maximum cone movement is evident. Many speakers will be found with very stiff working cones, easily determined by gently pushing in at the center with a finger. Such speakers work all right at the higher frequencies, but may lack good bass re-

sponse. In the past, speakers were made with a flexible leather mounting ring at the edges of the cone to improve the bass. The two shown in Figs. 1 and 2 have bellows-like construction at the edge, rather than the usual direct mounting to the frame, to provide a more flexible operation of the cones.

For good fidelity choose a good quality output transformer of generous size, since a cheap, small transformer will often fail to cover the wide frequency band of the signals delivered to it, if the full range of the musical scale is desired. The transformer must also match the rated load resistance of the amplifier output tube or tubes in the circuit, to the voice coil impedance. For example, a 6 V 6 with 250 volts on the plate requires 5000 ohms load resistance. Using the twin speakers, each with a $3-4 \mathrm{ohm}$ voice coil, this becomes $6-8$ ohms in series. Thus, you must match 5000 ohms to $6-8 \mathrm{ohms}$ on the secondary of the transformer.-Harold P. Strand.

How to Apply Small Decals

|THAS now become common practice to put the professional touch on ex-perimenter-made amplifiers, record players, other hi-fi equipment, amateur radio apparatus, etc., by using decalcomania transfer labels. Tweezers are recommended by most manufacturers for handling the individual words and lefters, but you'll have much more success, using a tiny paint brush of the variety found in chil-

Both black and white decals wore used here, the most frequently used trequencies on this selector appearing in white. dren's water color boxes-the smaller, the better.
For best results in applying decals, first lay out all of your supplies and materials so that you are ready to go to work without interruption. You will need, in addition to the book or sheets of decals themselves, a small pair of scissors with which to cut $0-$. the various words and letters; a small shallow dish or pan; (the cover from a glass jar works well) a small paint brush; and a soft, lint-free cloth.
Locate the word or letter you are going to use from the sheet, then carefully clip it out with the scissors, taking care to stay very close to the lettering so that a small spot of decal from the next letter does not mar the finished work. Drop this word or letter in the shallow water container and let it float while you look up and cut out the next word or letter. About 30 seconds in the water is enough for the average manufacturer's decals, although a full minute in water will do no harm. Sometimes it will be found that the decal will separate from the paper in the water and float free. When this happens, lift the decal itself from the water, using the point of the art brush and picking it up only at one end. (Picking it up in the middle will result in its curling around itself.) If the decal has not separated from the paper backing (good, dry decals will not), then pick up the word or letter -paper backing and all-with the tip of the brush and lay it in approximate position on the surface to which it is to be applied. Drop it about half an inch above or below, or a little more than the equivalent of its own length to one side, not over the final position it will occupy. This, too, is somewhat contrary to manufacturer's suggestions, but makes for far easier handling. Then (again in disagreement with printed instructions) do not attempt to pull the paper out from benneath the decal. Instead, take the pointed handle of the brush and gently "tease"
it to follow to its final position by means of the brush and a little water. Use the pointed handle of the brush to push the decal into its proper position, re-wetting it slightly if it moves with difficulty. Don't attempt to float it in with an excess of water, particularly when it is to be located adjacent to other recently placed decals.
When you have positioned the word or letter in its final position, carefully pat it lightly with a lint-free cloth and, after absorbing the excess water, press it firmly into the surface with the cloth. Then leave it alone and proceed with the next word or letter!

When placing the larger dial scales and similar circular patterns, note that most of the better decal makers provide a "plus" sign in the exact center of the circle. In cutting out this decal do not cut out the inside of the circular area, but preserve the plus mark in its printed position. Before soaking the decal in water, place it in proper position and, using a prick punch or similar tool, puncture the exact intersection of the horizontal and vertical lines of the plus sign so that the mark is transferred to the surface of whatever the decal is to appear on. This will enable exact centering of the circular design when applied. (The plus mark is usually concealed behind a knob or dial anyway.)

Once you have completed lettering your panel or cabinet or other piece of gear, set it aside for a full 24 hours. Meanwhile, provide yourself with a small can of a high-grade lacquer. I have experimented with dozens of different brand names of various "clear" lacquers with varying degrees of success. For best all-round results, use "SYNALAC" clear white lacquer (made by W. P. Fuller Co.).

The first coat will dry hard within 20 minutes and then a second light coat should be applied. If the decals will be subject to rubbing fingers or other hard usage, a third, and thicker coat will also be needed and sometimes as many as five coats in all.-Howard S. Pyle.

Answers to
 Electronics Numbers Quiz
 On Page 58

1) c-CK705
2) $b-1 \times 2$
3) $c-4: 3$
4) $b-33 / 4^{\prime \prime}$ and $71 / 2^{\prime \prime}$
5) a (and c)-60 c.p.s. (and .06 kilocycles)
6) TV channels VHF (a) and UHF (b)
7) a -40 (40 parts tin to 60 parts lead)
8) $b-60$
9) $c-746$
10) Record player speeds
11) c-6 Megacycles
12) $b-6$ Megacycles

Abstract

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and of course, only information available up to press-lime could be included. Copyright 1958 by Science and Mechanics Publishing Co., 450 East Ohio St., Chicago 11, III.

QUICK REFERENCE INDEX

U.S. AM Broadcasting Stations
Listed Alphabetically by Call Letters. 162
Canadian AM Broadcasting Stations
Listed Alphabetically by Call Letters................ 168 168
U.S. and Canadian AM Stations
Grouped According to Frequency 169
U.S. and Canadian AM Stations
listed Alphabetically by Location. 177
World-Wide Short-Wave Stations
Listed by Frequency 184
Canadian Short-Wave Stations
Listed by Frequency. 186
U.S. FM Broadcasting Stations
Listed Alphabetically by location. 186
Canadian FM Broadcasting Stations
listed Alphabetically by Location.. 188
U.S. Television Stations
Listed Alphabetically by location. 188
Canadian Television Stations
Listed Alphabetically by location. 190
History of White's Radio Log

White's Radio log was founded in Providence, R. I., by Charles DeWitt White as an extension of his earlier publishing activities which, in furn, were a continuation of the business established by his father: the publication of city directories, street guides and municipal tax guides.

In the early days of broadcasting, the compilation of a list of operating stations and their frequencies was no simple task. Prior to the Dill-White Radio Act of 1927, if a feed merchant, auto dealer, barber or undertaker wanted to advertise his wares or services, he had only to select a frequency and go on the air. A great many experimenters and business men did just that.

Nevertheless, Mr. White's directory publishing experience had convinced him that he could successfully assemble a radio log, and in 1924 he justified this conviction with the Rhode Island Radio Call Book, following this shortly after with White's Triple List of Radio Broadcasting Stations.

In 1927 the two publications were merged, nation-wide distribution was established and in ensuing years related publication\}, such as Sponsored Radio Programs, Radio Announcer's Guide, Shorl-Wave Schedule Guide and a special Canadion edition of the \log (which had had its fitle shortened to the one it bears today), were olso issued.

The log itself reached a combined circulation of well over $1,000,000$ copies at one time, in 1929-31 was distributed as the Enna Jettick Rodio Log (to promote the sale of shoes). in 1938-39 was distributed as the General Electric Radio Log (to promote General Electric's "sensational 1939 receivers with push-button tuning").

The Fall-Winter number of the 1927 Log listed 701 U.S. Stations. Most powerful were WEAF (now WRCA), N.Y., with 50,000 watts, KDKA, Pittsburgh, WGY, Schenectady,
and WJZ (now WABC), N. Y., each with 30,000 watts; WGN.WLIB, Chicago, with 15,000 watts; and Boston's WBZ, also with 15,000 . Five stations listed (one a Junior High School in Norfolk, Va.l operated on a mighty 5 watts, more than 100 stations had outputs of less than 100 watts.

The current \log cross-indexes over 3000 U.S. standardbrdadcast (AM) stations, separately lists U.S. frequencymodulation (FM) and television stations, has a complete compilation of Canadian broadcasters and, in addition, has a comprehensive world-wide roster of short-wave stations.

With the success of his Log, Charles DeWity White la direct descendant of Peregrine White, the first child born on the Mayfower's histaric crossing and bearer of the name of another illustrious ancestor, DeWitt Clinton) disposed of his eity directory and street guide interests and transferred his editorial operations to Bronxville, N. Y., a suburb of New York City, where he could remain in close touch with the broodeasting industry. On April 6, 1957, hoving only recently completed revising and updating the 34 th consecutive year of his \log , Mr. White died in his sleep. He was 76 years old.

Charles DeWitt White's daughter and heir, Mrs. W. R. Washburn, has sold all rights in and to the Lag to Science and Mechanics Publishing Co., and entrusted us with confinuing her father's work. This we are proud to do, beginning with the present edition, Vol. 35, No. 1, of White's Radio Log.

United States

Standard Broadcast (AM) Broadcasting Stations Listed Alphabetically by Call Letters C.L., call letters; Kc., frequency in kilocycies (for watt power of station, see list arranged by frequency, p. 169)

C.L. Locotion

KGYW Vallolo, Callf. KHAM Albuquerque, N, KHAS Hastings, N
KHBC Hilo, Hawail
KHBG Okmulgee, Okla
KHBM Monticello, Ark
KHBR Millsboro, Tex.
KHCD CIlfton, Ariz.
KHEM Big Springs. Tex
KHEN Henryotta, Okla
KHEY Ei Pase, Tex
KHEY EI Paso, Tex
KHIL Brighton-fort Lupton,
KHIT Walla Walla, Wash. KHEP Phoenix, Ariz.
KHFS Vancouver, Wash,
KHJ Los Angeles, Cali
KHMO Hannibal, Mo.
KHMO Hannibal, Mo.
KHOB Hobbs N. Mox.
KHOB Hobbs, N.Mex.
KHON Honolulu. T. H.
KHON Honolulu,
KHOZ Harrison, Ark.
KHQ Spokane, Wash.
KHSL Chico, Calif. KHUM Eureka, Calif. KHVZ Borger, rex. KIBE Palo Alto, Calif. KIBH Seward. Alaska KIBL Beevillo, Tox. KICA Clovis, N. Mex KICD Spencer, lowa KICO Calexico. Calif. KID Idaho Falls, Idaho KIDD Montercy, Calif KIDO Bolso, Idaho KIEM Eureka, Calli. KIEV Glendale, Callf. KIFN Phoonix, Arliz. KIF W Sitka, Alaska KIHN Hugo, Okia.
KIHO Sioux Falls. S. Dak
KIMR Hood S.Dak Kiks Suiphur, La
KIKI Honolulu, Hawali
KLL Lubbock, Tex. KILT Houston. Tox KIMA Yakima, Wash, KIMO Independence. At. Ploasant. Tox KIND Independence, Kans. KINE KIngsville, Tex KING Seattle, Wash. KIOA Des Molnes. Iowa KIOX Bay City, Tex. KPA Hilo, Hawali KIRK Kirksville. Mo. KiRO Sioux Falls, S. Dak. KIST Santa Barbara, Callf. KIT YakIma, Wash.
KITE San Antonlo. Tex. KITN Chehslis, Wash. KITN Olympla, Wash. Callt KIUL Garden Clty, Kans. KIUN Peces, Tex. KIUP Durango, Colo KIWW San Antonio, Tex KIXL Dallas, Tox KIYI Shelby, Mont.
Jam Vernal,
KJAN Atlantle, Jowa KJBC Mrdiand, Tox. CF Fastus, Mo KF Fastus, wo KIE Junction city, Kans. KJET Beaumont. Tex. KJFJ Wobster CIty, Jo Kit North Platte, Nobr KiNO Juntau, Alaska KJOE Shreveport. La $K j R$ Seattle, Wash.
KIRG Nowton, Kans.
KJSK Columbus, Nobr.
KIN Vodmond, Or KKOG Onalia, Cali
左 Angeles, Calif.KLAK Lakewood. Colo.KLAM Cordova, Alask:KAS
KLCB LIbby, Mont,
KLCO Blythovile
KLEA Poteau, okia.
KLEC Jonesvilie, La.
KLEE Ottumwa, lowa
KLEN KIHeen, Tox.
KLER Lewiston, Idah
KLGA Golden Moado

Ke. 11 1580
970 KLIK Jefforson Clty, Mo.
KLIL Estherville, lowa
560 KLIR Dincoln. Nebr.
560 KLIX Twin Fails, idaho
700 KLIX Brainerd, Minn.
1590 KLKC Parsons. Kans.
$i 320$
1280
1150
280 KL MS Lincoln, Colo.
150 KLMX Clayton. N.Me 930 KLOG Kelso, Wash
KLOH Plpestone, Minn. 380 KLOK San Jose, Calif.
1240 KLOS Albuquerque. N. Mox.
530 K LOU Lake Charles, La. KLOV Loveland, Colo. KLPR Okla. City, Okla 490 KLPW Union, Mo. 040
KLRA
K40
KLRS Mountain Grove, Mo,

KLTF Litlo Falls. Minn. 340 KLTF Littlo Falls, Minn 430 KLT Longvowi ox. \begin{tabular}{l|l}
230 \& KLTR Blackwell. Okla.

980 \& KLTZ Glas gow. Mont.

 240 KLUB Salt Lake City, Utah 340 KLUE Shroveport, La. 490 KLUF Galveston, Tex. 590 KLUK Evanston, Wyo. 630 KLUV Haynesville. La. 630 KLVC Loadville, Colo.

870 \& KLVL Pasadena. Tex,

870 \& KLVT Levolfand. Tox
\end{tabular} 870 KLVT Leveliand. Kex. 860

1230 KLX Oakland. Callif.
3340 KLYN Amarillo Tex. 1270 KLT Denver, Colo.
1340 KMA Shenandoah, Jowa
340 KMAC San Antonio. Tex.

310	KMAE	MeKinney, Tex
830	KMAK	Fresno, Callf.

1460 KMAN Manhattan, Kans.
060
610
KMAP Bakersfeld, Calif KMAR Winnsboro. La.
KMBC Kansas Clity, Mo.
510
510
950
010 KMCM MeMInnville. Ores.
1330 KMCO Conroe. T.x.
1090 KMED Medford, Ores.
800
1270
1110
710
1230
12
930
1420
N
言
9300 K
1290
1290

ㅇ

400

1350
1340
1220
1440
1150
101
1290 KNBC San franelsco. Calit
KNBX K rkhand, Wash.
KNBY Nowport. Ark.
0 KNCM Moberly, Mo.
KNCO Garden City, Kans.
KNDY Marysvilia, Kans.
KNEA Jonesboro. Ark

KNEA Jonesboro, Ark. KNEB Seottsbluff, Nobr. KNEL Brady. Tox. KNET Palestine, Tox T. 600 KNEX MePherson, Kans. | 1450 | KNGS Hanford, Callf. |
| :--- | :--- |
| 1010 | KNIM Maryvilio, Mo. | 1450 KNLR N. LIttle Rock, Ark. 910 KNOE Monroe

1280 KNOG Nogalos, Arlz.

1480 KNOK FR. Worth, Tex. $1480{ }^{2}$ KNOW Austin. Tox. 1410 KNOX Grand Forks. N, Dak. 1050 KNPT Nowport, Ore. 1300 KNUJ Now Ulm. Min 500 KNWS Waterloo tox. | 1570 | KNUZ Houston, Tex. | 1230 |
| :--- | :--- | :--- |
| KNWS Waterloo, Jowe | 1090 | KQIK Lakovlew, Oreg. |
| 1600 | KNX Los Angeles, Calif. | 1070 |
| KRUE Abuquerque, N, Mex. | | |

Kc. \mid C.L. Location 1230
190
1190
KOA Donver, Colo.
KOAL Price. Utah
KOAM Plitsburg, Kans. KOB Albuquerque. N. Mex KOBE Las Crutes, N.Mex.
KOBY San Franeiseo, Calit. KOCA Kilgara, Tex. KOCS Ontario. Cality, okla. KODE Joplin. Mo.
KODI Cody. wyo.
KODL The Dalles. Oreg. KODY North Platte. Nobr. KOEL Oolwelin. Iowa KOFE Pullman. Wash KOFE Kalispell, Mont.
KOFO Kant
KOFO Ottawa Kans. KOGA Ogaliala, Nobr. KOGA Ogallaia, Neb
KOGT Orange. Tox. KOGT Orange.
KOH Reno. Nov.
KOHU Hermiston, Ores. KOIL Omaha, Nobr.
KOIN Portiand, Ofog. KOIN Portiand. Oroa
KOJM Havre, Mont. KOKO Warrensburg, Mo KOKX Kookuk, lowa KOLE Port Arthur, Tex. KOLJ Quanah, Tox. KOLO Reno, Nov. KOLS Pryor, Okia,
KOLT Seotisbluff, Nebr. KOLY Mobridge, S. Dak
KOMA Okla. City, Okla. KOMA Coltage Grove, Ores. KOME Tulsa, Okia. KOMO Seattie, Wash,
KOM W Omak, Wash. KONE Reno. Nev. KONE Reno, Ner.
KONI Phoenix. Ariz. KONO San Antonlo, Tox.
KONP Port Angeles. Wash. KONP Portingooles,
KOOK Billings, Mont. K00L Phoenix, Ariz. KOOS Coos Bay, Ored
KOLD Tueson, Arlz. KOLD Tueson, Arlz.
KOPR Butte, Mont. KOPY Alles, Tox. KORA Bryan. Tex.
KORC MIneral Woils, Tox. KORD Pasco. Warh. KORE Eugeno, Oreg.
KORK Las VAg KORN Mitchell. S. Dak. KORT Grangeville, Idaho KOKY Little Rock,
KOSA Odessa. Tox. KOSA Odessa. Tox.
KOSE Osecola. Ark. KOSE Oseeola. Ark.
KOSF Nacogdoches,
KOSI Aurora, Colo. KOSI Aurora, Colo.
KOSY Toxarkana, Ar
KOT KOTA Rapld Clty, S.Dak.
KOTN PIne Bluft. Ark. KOTS Deming. N.M. KOVC Valley CIty. N.Dak.
KOVE Lander. Wyo. KOVE Lander. Wyo.
KOVO Provo. Utah KOWB Laramie. Wyo. KOWH Omaha. Nobr. KOXR Ornard, Callif. KOY Phoonix. Arlz. KOYL Odessa, Tox. KOYN BIIlings, Mont.
KOZE Lewiston, Idaho KOZY Grand Raplds, MInn KOZAC Port Arthur,
KPAK MInden, KPAL Palm Springs, Callf. KPAM Portiand, Oreg. KPAN Hereford, Tex. KPAS Banning. Ca
KPAT Pampa. Tex KPAT Pampa. Tex.
KPBM Carlsbad. N.
KPDN Pampa. Tex. KPPN Pampa, Tox.
KPDA Portland, Oreg
KPEP Sen KPEP San Angelo, Tex KPET Lamesa, Tox. KPIG Cedar Raplds, lowa KPIN Casa Grando.
KPKW Paseo. Wash. KPLC Lake Charles, KPLC Lake Charis.
KPLK Dallas, Oroi.
KPMC Bakerineld KPOA Honolulu, T. Hal KPOC Pocahontas. Ar KPOF Denver, Colo.
KPOF Portiand Or KPOK Scottsdale. Arís. KPOL Los Angeles, Gallf.
KPOO San Franelisco, Calif. KPOP Los Angeles, Calif. KPOW Powoll. Wyo.
KPPC Pnsadena, Cali KPQ Wenatchoo, Wash. KPRC Houston, Tex KPRL Paso Roblos. Calif KPRO RIverside, Callf. KPSS Proston, Idaho KPTL Carson City, N
C.L. Lecotlo KQV Pittsburgh, P
KRAI Crsig, Colo. KRAK Stockton, Callf.
KRAL Rawllns, Wyo.
KRAM KRAM Las Vogas. Nev. KRBA Lufkin. Tox. KRBC Abilone, Tox
KRBI St. Peter. Minn. KRBO Las Vegas. Nev. KRCK Ridgecrest, Callf
KRCO Prineville. Ores. KRCO Prineville,
KRCT Baytown, Tex. KRDG Redding: Calif.
KRDO Colo. Springs, Colo, KRDU Dinuba, Callif. KRE Berkeley. Callf. KREH Oakdale. La. KREL Baytown, Tex. KREM Spokane, Wash. KREO Indio, Calif. KRES St. Joseph, Mo.
KREW Sunnyside, Wash. KREX Grand lune., Colo. KRFC Rocky Ford, Colo. KRFO Owatonna, Minn KRGI Grand Island, Neb. KRGD Duncan, Okla. KRIB Mason City, Jowa KRIC Beaumont'
KRIG OX.
Odessa. Tex. KRIG Mdessa,
KRIO MeAllen. Tox KRIS Corpus Christi, Tex. KRIV Camas, Wash. KRIZ Phoenix, Ariz. KRPF Miles City, Mont KRKO Los Angoles,
KRKO Everett. Wash. KRKS Ridgecrost, Callf. KRLC Lewiston. Idaho KRLD Dallas, Tex. KRLD Canon City. Colo.
KRLN CW Walnut Ridge. Ark KRLW Whreveport, L. KRMG Tulsa, Okla. KRMO Monett, Mo. Mo,
KRMS Osage Beach, Mo,
KRMW The Dalles, Oreg. KRMW The Dalles, Oreg,
KRNO San Bernardino, Calif. KRNR Raseburg, Oreg. KRNR Roseburg,
K RNT D Dos Mos. Iowa KRNY Kearney, Nebr. KROC Rochestor, MI
KROD EI Paso, Tox. KROD EI Paso, Tox.
KROF Abbevilig, La.
KROG Sonora. Call KROG Sonora, Callf.
KROP Brawloy, Calif. KROP Brawloy, Calif
KROS Clinton, lowa KROS Oakland, Calif.
KROW O
KROX Crookston, Minn KROX Crookston, Minn.
KROY Sacramento. Calif. K RPL Moseow, Idaho KRRV Sherman. Tox. KRSC Seattle, Wash.
KRSD Rapld Clty, S. KRSL Russell, Kans. KRSN Los Alamos. N. Mex KRTN Raton. N.Mex. KRTR Thermopolts, wyo KRUN Ballinger. Tex KRVN Lexington, Nebr. K RUX Glendale. ArI KRWS Post, Tex. KRXK Rexburg, Idaho
KRXL Roseburg, Oreg. KSAC Manhattan, Kans, KSAL Salina, Kans.
KSAM
Huntsville, Tox KSAN San Franeisco. Call 1490 KSBW Sallnas, Callf. KSCB Liberal. Kans. KSCJ Sloux City. lowat
KSCO Santa Cruz, Callf. KSD St. Louls, Mo. KSDA Redding, Callf.
KSDO San Diego, Galif. KSDO San Dlego, Calif.
KSON Aberdeen, S, Dak. KSEI Pocatello, Idaho
KSEK Pittsburg Kans. KSEK Pittsburg, Kans
KSEL Lubbock, Tox. KSEM Moses Lake, Wash. KSEO Durant. Okla.
KSET EI Paso, Tex. KSEw Sitka, Alaska KSEY Seymour, Tox.
KSFA Nacogdoches, Tex. KSFE Neodles, Callf. Callf.
KSFO San Franciseo, KSFO San Franciseo,
KSFT Triniddad. Colo. KSGA Redmond. Oreg. KSGM Ste. Genevleve, Mo. KSIB Creston, lowa
KSIO SIdney, Nebr KSIO SIdney, Nebr. KSIG Crowloy. La. KSII Gladewater, Tox.
KSIL SIlver Clity, N.Mex. KSIL Silver Cliy, N. Max
KSIM SIkeston. Mo. KSIM SIkeston. M KSIS Sedalia, Mo.
KSIw Woodward, Okla KSIW Woodward, Okla.
KSIX Corpus Christi, TTeX KSJB Jamestown. N. Dak. KS10 San Jose, Callf.

Kc.

C．L．Location WGAN Portland，Maine WGAP Maryville．Tenn． WGAR Cleveland．Ohl WGAW Gardner，${ }^{\text {Wa }}$ WGAY Silvor Sprins WGBA Columbus，G：Md． WGBE Frooport．GA． WGBF Evansvilla，ind WGBG Groensboro，N．C． WGBI Seranton．Pa． WGBS Moldsboro，N．C WGCB Rod Lion．${ }^{\text {Pa }}$ WGCO Chestor，S． WGCM Gulfport，Miss． WGEE Indiana，Ala WGEM Oulncy polis．Ind． WGES Chleago，III． WBET Gettysburs．P WGEZ Belolt．Wis． WGFS Covington，Mich． WGGA Gainesvilio，Ga． WGGG Gainesvillo，Gia WGH Marion，lil． WGHM Skowegan．Maina WGHN Growegan，Maine WGHN Gry，Haven，${ }^{\text {Wig }}$ WGGG Grunswiek，Ga． WGIV Charlotte．N．C． WGKA Atlanta，Ga． WGKV Charlosion．W．Va． WGL Fort Wayno，Ind． WGMA Hollywood，Fla． WGMS Washington，
WGNC WIImington，N．C． WGNS Murfroesboro．Tonn． WG GY Nowburgh．N．Y．
WGOL Goldsboro．N．C． WGOV Valdosta，Ga． WGPC Albany，Ga． WGR Buffalo，N．Y WGRA Calro，Ga．
WGRC Loulsvillo．Ky． WGRD Grand Raplds．Mleh． WGRF Aguadella，P．R． WGRM Greenwood，Miss．
WGRV Greeneville，Tenn． WGRY Gary，Ind． WGSA Savannah，Ga． WGSM Huntlngton，N．Y． WGSV Gunteriville，Ala． WGSW Greenwood，S．C． WGTA Summervilie，Ga． WGTC Greenvillo，N．C． WGTM Wilson．N．C． WGTN Gaorgatown，s．C． WGUY Halnes City，Fi WGVA Geneve．N．Y． WGVM Greenville，Miss． WGWC 8olma，Ala． WGWR Asheboro，N．C． WGY Seheneetady．N．Y WHA Madison，Wis． WHAB Baxley，Ga． WHAI Greonneld，Mass． WHAK Rogers City，Mieh． WHAL Shelbyville，Tenn WHAM Rochester，N．Y． WHAP Hopewoll，V ． WHAR Clarksburg，W．Va． WHAS Loulsvllie，Ky． WHAT Philadalphia．Pa
WHAV Haverhll，Mass． WHAV HaverhIII，Mass， WHAW Weston．W．Va． WHAZ Troy，N．Y． WHB Kanas City，Mo． WHBB Solma．Ala． WHBC Canton．Ohio
WHBF Rock Island，III． WHBF Rock Island，III． WHBG Narrisonciark．N．J． WHBL Shoboygan，WIs． WHB HO Tampa．Fla． WHBQ Memphis．Tenn． WHBS Huntsvllie．Ala． WHBU Anderson，Ind． WHBY Apploton，Wis w HCC Waynesvilio，N．C． WHCO Sparta．III．
WHDF Houghton．Mich WHOH Boston．Mass． WHDL Olean，N．
WHDM MeKonzle．Tenn． WHEB Portsmouth，N．H． WHED Washington，N．C．
WHEN Syracuse，N．Y． h．

Kc －ーーーーーー－－ 560 C．L．Locaflon
WHER Memphis．Ton．

WHFB Benton Harbor．Mich | 400 | W |
| :--- | :--- |
| 340 | W | 1340 WHGB Cleero，III．Pa 1430

1060
1650 1050 WHGR Houshton L．．Mleh． 1270 WH HH Warten，Ohlo 1240 WHHM Memphis．Tonn． 1280 WHIE Grimn，Ga． 910 WHIL Modford，Mass． 150 WHN E．Providence．R 10 WH1O Dayton，ohlo 1440 WHIP Moresville．N．C． 1490 WH1R Oanvillo，Ky． 1240 WHiS Bluenold．W．V． 15 ． 1590 WH12 Zanesville，Ohic． ${ }_{450}^{390}$ WHJC Matawan，W．Va． 1490 WHK Cloveland．Ohlo 430 WHKP Hendersonvilite．N．C． 550 WHKY Hiskory，N．C． I50 WHLD Niagara Falls，N．Y． 150
310
150
WHLF South Boston，Va．
Wempstead．N．Y． WHLL Whooling，W，Va．
0 WHLN Bloomsburg，Pa． WHLP Contervilie，Tenn．
WHLS Port Huren，Mieh． WHLS Port Huren，M
WHMA Anniston，Ala．
WHMA Howoll．Mish． 300 WHMI Howell．Wieh． 250 WHMP Northampton，Mass． 580 WHNC Henderson，N．C．

1340
1240
1340
13
${ }_{135}^{122}$

WHUB Cuntington，W．Va．
1350 WHUC Hudson，N．Y． WHUM Reading，Pa． WHUN Huntington．Ps
WHVF Wausau．WIs．
WHVH Hendarson WHVH Hendarson，N．C
WHVR Hanover，Pa． WHVR Hanover，Pa
WHWB Rutland，Vt WHW8 Rutiand，Vt．
WHWL Nantieoke，Pa．
WHX Bogalusa，La． WHXY Bogalusa，La． 340 WHYN Springfiold，Mass WIAC San Juan，P．R． WIBA Madison．Wis． WiB8 Macon，Ga．
WIBC indianapoifs

$$
\begin{aligned}
& \text { WIBC indianapoifs, Ind } \\
& \text { WIBG Philadelphia, Pa, } \\
& \text { WIBK Knoxville. Tenn. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WIBK Knoxville. Ten } \\
& \text { wIBM Jatkson, Mleh. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WiBR Baton Rouge, La. } \\
& \text { WiBs Santurco, P.R. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WiBs Santureo, P.R. } \\
& \text { WiBU Poynotto, Wis. } \\
& \text { wiRy Rallayill }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WIBV Belleville, Ill. } \\
& \text { wiBw Topeka. Kans. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WiBX Utlen. N.Y. } \\
& \text { WicA Ashtabula. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WICA Ashtabula. Ohio } \\
& \text { WICC BrIdseport, Conn. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WICC Brldyeport, Conn. } \\
& \text { WICE Providonee R.f. } \\
& \text { WICH Norwleh. Conn. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WICH Norwleh, Conn. } \\
& \text { wick Seranton, Pa. } \\
& \text { wico Sallshury. MA. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WICo Sallsbury, Mo } \\
& \text { WICY Malone. N.Y. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WIDE Biddeford, Maine } \\
& \text { WIEL Elizabethtown. K }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WIEL Elizabothtown. } \\
& \text { WIFM EIkIn. N.C. } \\
& \text { wIGM Madford. Wis. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WIGM Modford, Wis. } \\
& \text { WIKB Iron River, MIeh. } \\
& \text { WIKC Bogaluss. Ls. }
\end{aligned}
$$

 WIKC Bogalusa, La
 WIKK Erle P.
 550
 1250
 1240
 1230
 1400
1400
1230
230
870
870
870
1400
850
1450
1450
1440
750
750
1460
1340
1340
620
1370

Canadian

Amplitude-Modulation (AM) Broadcasting Stations Listed Alphabetically by Call Letters
 C.L., call letters; Kc., frequency in kilocycles (for watt power of station, see list arranged by frequency, p. 169)

C.L. Lecation

CBA Sackville, N.B,
CBAF Moncton, N. B.
CBE Montreai, Ont.
CBG Gandor.Ńfd.
CBH Hallifax. N.S.
CBI Sydney, N.8.
CBJ Chicoutimi, Que.
CBK Regina, Sask.
CBL Toronto, Ont.
CBM Montreal, Que.
CBN St. John's, Nfid.
CBO Ottawa, Ont.
CBU Vancouver, B. C.
CBV Quebec, Que.
CBW WInnipeg, Man.
CBX Edmonton, Alta.
CBXA Edmonton. Alta.
CFAB WIndsor, N.S.
CFAB Calgary. Alta.
CFAM Altona, Man.
CFAR Flin Fion, Man.
CFBC Salnt John, N.B
CFCF Montroal, Qua,
CFCH North Bay, Ont.

Kc. 1070 | 1070 |
| :--- |
| 1300 |
| 1550 |

C. L
 .L.

Location CFCN Calgmins, Ont. CFCO Chathem, Ont. 690 CFCW Camrose. Alta 1450 CFCY Charlottetown. P.E.I. 1140 CF GP Grande Prairie. Alta. 580
540
740
CFGR Gravelbourg, Sask.

CF. Joseph d'Alma, Que | 540 | CFGT St. Joseph diAlm |
| :--- | :--- |
| 740 | CFJB Brampton, Ont. | 340 CFjB Brampton, Ont. 40 CFIR Brookvilie, Ont. 90 CFNB Fredericton. N.B. 90 CFOB Farkatoon, Sask. 80 CFOB Fort Frances, Ont. CFOR Orlilla. Ont.

CFOS Owon Sound, Ont 1010 CFOS Owen Sound, Ont.
1010 CFPA Port Arthur, Ont. 740 CFPL London, Ont. 790 CFPR Prinse Rupert, B.C. 1450 CFFR Ottawa Ont 960 CFRA Otiawa, Ont. 1290 CFRB Koronto, Ont. 590 CFRG Gravelbourg, 8ask. 930 CFRN Edmonton. Alta. 600 CFRS Simeoe, Ont. 600 CFRY Portage la Prairle.
C.L. Location CHAB Moose Jaw, Sask. CHAD Amos, Que. CHAT Medielne Hat. Alta. CHEO Edmonton, Alta. CHEF Granby, Que. CHEX Poterborough, Ont. CHFA Edmonton, Alta.
CHGB St. Anno de la Poeatiers, Que

HLN Throe Rlvers, Que

HLO St. Thomas, Ont.
CHLP Montroal, Que.
CHLT Sherbrooke. Que.
CHML Hamllton, Ont.
CHNC Now Carlisle, Que CHNO Sudbury. Ont, CHNS Hallfax, N.S. CHOK Sarnla, Ont. CHOV Pombroke, On CHRC Quebec, Que. CHRD Orummondville, Que. CHRL Roberval, Que.

SJ St. Jean, Que. CHSJ gaint John, N.B.
CHUB Nanalmo. B.C. HUM Toronio. Ont. CHWK Chililwatk, B.C. CHWO Oakvillo, Ont. 1410 CJAT Trail. B.C.

Ke.	C.L. Lecation	Ke.
800	CIAV Port Alberni, B.C.	1240
1340	CJBC Toronto, Ont.	860
1270	CJBQ Bellevilie. Ont.	800
1080	CJER RImouskl, Que.	900
1450	CJCA Edmonton, Alta.	930
1430	CJCB Sydnay, N.S.	1270
680	CJCH Halliax. N.S.	920
	CJCS Stratford, Ont.	1240
1350	CJOC. Oawson Creek, B.C.	1350
550	CJEM Edmundston, N.B.	570
680	CJET Smiths Falls, Ont.	1070
1410	CJFP Riviere du Loup. Que.	1400
900	CJFX Antlgonish. N.8.	580
300	CJGX Yorkton, Sask.	840
610	CJIB Vernon, B.C.	940
900	Cilc Sault Ste. Mario. Ont.	1490
960	CJKL Kirkland Lake, Ont.	560
1070	CJL8 Yarmouth, N.S.	1340
1350	CIMS Montreal, Que.	1280
800	CJMT Chicoutimi, Que.	1450
1340	CJNB N. Battloford. Sask.	1460
910	CJOB WInnipeg, Man.	1340
1090	CJOC Lothbridge. Alta.	1220
1150		930
1570	CJOR Vancouver, B.C.	600
1050	CJOY Guelph, Ont.	1450
1600	cjac Quobet, Que.	1340
1270	CJRH Richmond Hill, Ont.	1300
1250	CJRL Kenora, Ont.	1220
800	C)RW Summerside, P, E,I.	1240
610	CJSO Sorol, Que.	1320

C.L. Locotion

CJSP Leamington, Ont CKVI Victoria, B.C. CKAC Montreal, Que. CKBB Barrie. Ont. CKBI Prince Aibert, Sask. CKBL Matane, Que. CKBM Montmanny, Que. CKBW Bridogmater. N.s. CKCK Ruilina Sask.
CKCL Truro. N.s.
CKCL Truro, N.s. CKCV Queber, Que.
CKCW Moneton, N.B.
CKCY Sault Ste. Mario, Ont. CKDA Victoria, B.C. CKEC New Glas gow, N.s.
CKEC New Glassow. N.

Ke. C.L. Location
710 CKEY Toronto, Ont.
${ }_{730} 900$ CKFH Toronto, Ont. 730 CKGB Trmmins, Ont. 1400 CKJL St. Jerome, Que. 900 CKLB Oshawa. Ont. ${ }_{1250}^{900}$ CKLC KIn 1490 CKLD Theifford mlnines , Que. 1000 CKLG N. Varicouvor, B.C. 970 CKLN Nelson, B.C. ${ }_{620}^{97}$ CKLS Las iarre, Que. ${ }_{600}^{620}$ CKLS LS WIndsor, Ont. 1490 CKLY Lindsay, Ont. 1490 CKLY Lindsay, Ont. 1220 CKMX Gorse Crown, Nifd. 1400 CKNB Campberlon. N.B. 1280 CKNW New Westminimer 1230 CKNX Win inam, Ont. 1230 CKNX Wingham, Ont,

Ke.	C.L. Lecaton
580	CKOK Pentist
1400	CKOM Saskatoon, Sask.
680	CKOT Tillsonburg, Ont.
1110	CKOV Kolowna, B.C.
900	CKOX Woodstock, Ont.
1350	CKOY Ottawa, Ont.
1380	CKPC Brantford, Ont.
1230	CKPG Prince Giorge, B.C.
1070	CKPR Fort William, On
1240	CKRB Ville St. Georees
1240	CKRC Winnlpes, Man.
800	CKRD Red Deer, Alta.
910	CKRM Regina, Sask.
790	CKRN Rouyn, Que.
8	CKR8 Jongulere, Que.
	CKSA Lloydminster. Alta
1320	CKSB St. Boniface, Men.
920	CKSF Cornwall, Ont.
1150	CKSL London. Ont.

	C.L. Loedton	Ke.
800	CKSM Shawinigan Fal	
1420	Quebet	1220
1510	CKSO Sudbury, 0nt,	790
630	CKSW Swlit Current, Sask.	1400
1940	CKTB St. Catharines. Ont.	620
1310	CKTR Three Rivers, Que.	1350
1380	CKTS Sherbrooke, Que.	1240
550	CKUA Edmonton, Alta.	580
580	CKVD Val d'Or, Que.	1250
1400	CKVL Verdun, Que.	850
630	CKYM Ville Marie. Aue.	710
850	CKWS Kingston, Ont.	980
980	CKWX Vancouver. B.C.	980
1400	CKX Brandon. Man.	1150
590	C	40
1150	CKY Winnipeg, man.	680
1250	VOAR St. John's. Nfid.	1230
1230	VOCM St. John's. Nid.	590
1290	VOWR St. John's, Nfid.	800

United States and Canadian

Amplitude-Modulation (AM) Broadcasting Stations Grouped by Frequency; U.S. stations listed alphabetically by location within groups, Canadian stations precede U.S.
Abbreviations: Kc., frequency in kilocycles; W.P., watt power-Wove length is given in meters (all AM stations broadcosting of a higher frequency than 1600 Kc . are listed under Short-Wave Stations, see p. 184 and p. 186)

Wave Length	W.P.	Ke. Wave Length	W.P.	Kc. Wave Lenc	W.	-	W.P.
540-555.5		WSYR Syrasuse,	5000	WPDQ Jacksonville, FI	5000	WSAV Savannah, Ga. KIDO Bolse Idaho	00
			5000 500		$\begin{aligned} & 5000 \\ & 1000 \end{aligned}$	KIDO Bolsfíldaho	0
FMB San Diago, Callf.	$\begin{array}{r} 5000 \\ .5000 \end{array}$	WMSN Haleigh, N.C. Ohio	5000	WCAD Baltimore,	5000	KT1B Thlbodaux, La.	-
WGTO Halnes Clity, Fia.	10000	WNAX Yankton, S.Dak.	5000	WTAC Flint.	1000	WJMS Ironwood,	000
KEOK Ft. Dodse	1000	WFAA Dai	5000	KGEZ Kallspoll,	2000	K	5000
VM Pocomoke Clity,	500	WBAP Ft. Worth. Tox.	5000	WMRY Now Orioans,	10003	KOH Reno Aev.	5000 500
XN Clarksvilie. Tenn.	250	KLUB Salt Lake City, Utah	5000	WSJS Winstor-Saiem		KLEA Lovington,	
Riehiands,	1000		$\begin{array}{r} 5000 \\ 250 \end{array}$	W	5000 1000	WMFD WIImIngton. N.C	1000
				WAEL Mayaou	1000	Koos Coos Bay.	1000
0-545				WREC Memphis	5000	WEJL Scranton,	500
CFNB Frederiston,	5000			KROD EI Pas	5000	WPRO Provid	000
CHLN Three Rivers,	5000	C	1000	KERB Kermit. Tox	1000	KGFX Pie	200
CKPG Pr. George,	250	CJFX Antigonish, N.S	5000	KTBB Tyier. Tex.	1000		5000
ENI Anchorage. A	5000	CKEY Toro	5000			AAC San Antonio Tox.	00
OY Phoenix, Ariz.	1000	CKPR Ft. William. ont.	1000	610-491.5		GDN Edmunds, Wash.	
akersfold.	1000	CKY wimnip	5000	CHNC Now Carilsis.	5000		
GGA Galnesvilie.	5000	WTUS Tusk	500	C	1000		
HYN Springheid.	1000	KABI Ketchikan, Alaska	1000	WSGN BIrmingham,	1000	CBN St. John's,	00
CBI Columbus.	1000	KCNA Tueson, Ariz.	5000	KFRC San Franeiseo, Cali	5000	KFI Los Angeles,	50000
OPR Butte, Mont.	5000	KMJ Fresno. Calir.	5000	WCKR Mlami, Fia.	2000	Ames	5000
FRM Kansas City. Mo.	5000	WDBO Oriando. Fia.	5000	WCEH Hawkingvilio. Ga,	5	WHKK Akron, Ohlo	1000
SD St. Louls.	5000 5000	WGAC Augusta, Ga.	1000	KESE lowarais,	5000	D Norman, Ol	0
YR Bismart	5000	WILL Urbs	5000	WDAF Kansas Clty,	5000		
KRC CInelnna	5000	KSAC Manhattan. Kans.	500	KOJM Havre,	1000		
OAC Corval	5000	WIBW Topeka, Kans.	5000	WGIR Manghester, N	5000	Nashville, Ten	000
HLM Bloomsburg.	500	KALB Alexandria, La.	5000	KGGM Albuquerque,	5000	T	250
PAB Ponee.	3000	WTAG Worcester, Mass.	500	WAYS Chariot	500		
PAW Pawtuok	1000	WELO Tupelo, Miss.	1000 5000	WIP Phliad	5000	660-454.3	
Wailuku.	50		5000	KILT Houston. Tex.	5000	KFAR Fairbanks. Alasks	10000
SA San Antonlo.	50	WKAQ San Juan, P.R.	5000	KVNU Logan. Utah	1000		0
WDEV Waterbury. V	1000	WRKH Rockwood, Tenn.	500	WSLS Roanoke Va	5000	-	000
SVA Harrisburg.	5000	KDAV Lubbock. Tex.	500	KEPR Kennewick, Wash		-	1000
SA Wausau.	5000	WCHS Charleston, W.Va. WKTY LaCrosse. WIS.	$\begin{aligned} & 5000 \\ & 1000 \end{aligned}$				
560-535.4						670-447.5	
FRA Ottawa, Ont.	1000	590-508.2		Katharine.	1000	WMAQ Chicago.	0000
CJKL Klrkland Lake. Ont.	5000	CFAR Flinfion. Man.	1000				
WOOF Dothan. Als.	5000	CKRS Jonquiere. Que.	1000	KNGS Hanford, Calif.	1000	680-440.9	
KYUM Yuma, Ariz	1000	COCM St. Johns, N,F.	1000	WSUN St. Patersburs, Fia.			
SFO San Fran., Calif.	5000	WRAG Carroilton. Ala.	1000	WTRP LaGranfe, Ga.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	CHFA Edmonton, alt	$\begin{aligned} & 5000 \\ & 1000 \end{aligned}$
L Denver, Coio	5000 5000	KBHS Hot Springs,	500	KCOM Sloux City. lowa	1000	CKGB Timmins. Ont	5000
IND Chieapo,		WFLM San Berna	1000	KMNS Sioux clity, lowa	1000	KNBC San F	50000
WMIK Middlesboro.	500	WAGA Atianta, Ga.	5000	WLBZ Bansor, Maine	5000	WPIN St, Patershiur	00
WGAN Portland, Malne	5000	KQmB Honolulu, Hawall	5000	WJDX Jackson, Mlse.	5000	WCTT Corbin. Ky.	1000
HYN Springheld. Mass,	1000	KID Idahe Falls, Idaho	5000	WRBC Jaekson. Mlis.	5	WCBM Baitimore, Md.	10000
WMIC Monroe, Mleh.	500	W VLK Lexington, Ky.	1000	N Syraouse N,		WNAC Lawrenco, Mass.	5000
WEBC Duiuth. MInn.	5000	WEEI Boston, Mass.	5000	N Syraouse, N.Y.		WDBC Eseanaba, Mieh.	1000
KWTO Springfoid, Mo.	500	WKZO Kalamazoo, Mieh.	5000	rt	5000	KFEO St. Jozeph.	5000
MON Great Fails, Mont.	500	Omaha.	5000	WHJB Greenshurg, Pa	1000	WINR Binghamton, N.Y	1000
WGAI Elizabeth City, N.C	1800	Wilson, N.C	5000	WKAG 8an Ju	5000	WRNY Rochester, N.	250
WFIL Philadelahla, Pa.	5000		5000	WATE Knoxy	5000	WPTF Ra	50000
IS Columbia, S.C.	5000	WARM Scranton,	5000	KWFT Wishita Falis, T	5000	WISR Butier	250
WHBQ Memphls, Tenn.	5000	BS Unlontown, P	1000	wCAX Burlingt	3000	WAPA San Juan, P.Rle	10000
FDM Beaumont. Tex.	000	KTBC Austin, Tex.	1000	WWNR Bockioy. W.Va.	1000 5000	WMPS Memphis	10000
PQ Wenateheo, Wash.	5000	KTBB Tyle	1000	WTM M Milwaukee	5000	KENS San An	50000
JLS Beckloy, W.Ya.	5000	Cedar City, Utah	1000			KOMW Omak	
		WLVA Lynchbure, Va.	1000	630-475.9			
70-526.0		h.	5000	Ont.	1000	690-434.5	
CJEM Edmundston, N,B.	1000			CFCY Charlottetown, P.E.	5000		
WCAS Gadsden, Ala.	1000			CKRC WInnl		CBF Montreal. Que.	50000
KCNO Alturas, Calif.	1000	CFCF Montreal. Que.	5000	CKYL Peace River, Alt	1000	KVNA Flagstaff, Ariz.	1000
KLAC Los Angeles, Callf.	5000	CFCH North Bay, Ont.	5000	WAVU Albertville, Als.	1000	WVDK Blrmingham, Ala	50000
GMS Washington. D.C.	5000	CJOR Vancouver. B.C.	5000	wJOB Thomasville, Ala,	1000	KEVT Tucson, Ariz.	250
ACL Wayeross, Ga.	1000		1000	KJND Juneau, Alaska	1000	KBBA Benton, Ar	250
KYB Padueah, Ky.	1000	KCLS Flagstant.	5000	KVMA Magnolia. Ark.	1000	WADS Ansonia. Conn.	500
VmI Biloxi, Miss:	1000	KVCV Redding. Calif.	1000	D Monterey, Calif.	0		
GRT Los Cruees, N.Mex.	1000	KFSD San Diego, Calif.	5000	KMA Waricolo.			169
MCA Now York. N.Y.	5000	wicc Bridgeport, Cong.	500	WMAL Washington, D.C.	5000	White's RADIO LOG	

Kc. Wave Length KGGF Coffeyville, Kans WWE2 New Orleans, La KSTL St. Louls. Mo. KRCO Prinavilio. Dreo KUSD Vermilifion, S.Dak. KULA Honolulu. T.H. KHEY EI Paso, Tox KPET Lamesa, Tax. WNB Bristol. Va WELD Fisher. W.V.

700-428.3
WLW CincinnatI. Ohio
710-422.3
CJSP Leamington, Ont. CKRG Gravelbourg. Sask. WKRG Moblle, Ala KMPC Los Angeles, Calif. KMYR Denver. Colo WGBS Mlami. Fla WROM ROme Ga. WHB Saroveport La. WOR New York, N. Yo. DZRH Manlia, P.I. WTPR Paris Tonn. KGNC Amarlllo, Tex.
KURV Edinburg, Tex KURV Edinburg, Tox. KIRO Seattle Wash. KFBC Cheyenne, Wyo.
$720-416.4$
WGN Chicago. lil.

$730-410.7$

CKAC Montraal, Que. KFQD Anehorage. Alaska KNBY Nowport, Ala. Ark WKTG Thomasville. Ga. KWGB Goodland. Kans. WFMW Madisonvilie. Ky WMTC Vancleve. Ky. WARB Covinotion. La WACE Chieopee, Mass. KWRE Warrenton, MO. WDOS Dneonta, N.Y. WDHS Shelby. N.C. WTLG Bowling Green. Dhio KBOY Medford, Dreg. WHWL Nantlcoke, Pa WPAL Charieston, S.C. WLIL Lenoir. Tenn. KBCS Grand Prairie. Tex. KKOG Ogden. Utah WPIK Aloxandria. Va. WMNA Grotna, Va.
KULE Ephrata, Wash.

740-405.2
CBXA Edmonton. Alta. CBL Torento. Ont. WBAM Montpomery. KBG Avalon, Calif. Ala. KCBS San Franeiseo, Callf, KVFC Cortoz, Colo. WORZ Orlando. Fla. WNOP Newport, Ky WNOP Newport, Ky KBOE Oskaloosa. Iow WTAO Cambridge. Mass WOSM Mutladion. N. WMBL Morehead city. N.C. WPAQ Mount Alry. N.c. KRMG Tulsa, Okla.
WIBS Santurco, P. Rito WBAW Barnwell. S.C. whG Tullahoma ton KTRH Houston, Tex.

750-399.8

WSB Atlanta. Ga.	50000
WBMD Baltimore. Md.	1000
KMMJ Grand Island. Neb.	1000
KSEO Durant. OKia.	250
KXL Portand. Oreg.	10000
WHEB Portsmouth, N.H.	1000
WPDX Clarksburg, w.Va.	1000

760-394.5
KGU Honolulu. Hawall
WJR Datrolt. Mieh.
WCPS Tarboro. N.C

250
50000
5000
5000
0000

250
50000
50000
10000
\square

250
1000
5005000
1000
250K
$\begin{array}{r}1000 \\ \hline\end{array}$웅
10000
50000
1000 50000
1000
10000
10000
500
250
250
50000
50000
10000
1000
10002500
50000

W.P.
 10000 5000 1000 1000 1000 1000 10000 10000 250 10000 250 500

 770-389.4

KUDM MInneapoils, Minn.	5000
WCAL Northfield. Minn.	5000
WEW St. Louis, Mo.	1000
WABC New York. N.Y.	50000
W 12 New York. N.Y.	
KXA	1000
780-384.4	
WBBM Chicas	50000
WJAG Norfolk, Neb.	1000
WCKB Dunt, N.C.	1000
WBBD Forest City, N.C.	1000
KSPI Stiliwater. Okla.	250
WARL Arlington, Va.	1000

790-379.5

5000
1000
1000
50000
5000
50000
1000
10000
10000
50000
50000
10000
10000
1000
$\begin{array}{r}250 \\ 10000 \\ \\ \hline\end{array}$
k
k
k
k
k
k

CBY Corner Brook. N.F.
CKMR Neweastle. N.B.
CKSO Sudbury. Ont.
융ㅇㅇㅇㅇ

000

\section*{0 | 0 |
| :---: |
| 0 |}

86

CJBC Toronto, Dnt. WHRT Hartselle,
WAMI ODD. Ala:
KAF KIFN Phoenil, Ariz
KOSE Oscoola, Ark KOSE Oscoola, Ark
KWRF Warren, Ar KWRF Warren, Ark.
KTRB Modesto. Calif.
WKKO Cocoa. F WKKD Atlanta. Gla. WDRG Atianta, Ga.
KWPC Douolas, Ga. KWPC Museatine. Iowa
WMRI Marion KOAM Plitton. Ind. Kans.
WSON Henderson, Ky. WAYE Dundalk, Md.
WSBS Gt. Barrington. WNAW N. Adams. Mass. KNUJ Now Ulm. Minn.
WMAG Forest. Miss. WMAG Forest. Miss. WFMO Fairmont. N.C. WAMO Homestead. Pa. WTEL Philadelphla. W WMTS Murfreesboro. Tenn. KFST Ft. Stockton, T
KPAN Moreford. Tex. KPAN Horeford, Tex. KSFA Nacogdoches. Tex.
KONO San Antonio

5000

1000 KWHO Salt Lake City. Ütah

 WEWO
W WFOX Milwaukee, Wis.
$870-344.6$
KIEV GIendale, Calif. KAIM Kalmuki. Hawali WWL Now Drleans, La. WKAR E. Lansing. WGTL Kannapollis, N.C. KCNC Ft. Worth, Tax
WFLO Farmville. Va. 880-340.7
WCBS Now York. N.Y.

\begin{tabular}{|c|c|c|c|c|c|}
\hline c. Wave Length \& W.P. \& Kc. Wave Length W.P. \& Ke. Wave Length W. \& Length \& W.P.

\hline Kwoc Poplar Bluff Mo. \& 00 \& KAYt \& KCH! Delano, Calif.
$$
5000
$$ \& wVCG Coral Gables, Fia. \& $$
00
$$

\hline Ogalala, Ne \& 5000 \& KHBC Hillo Hawali $\quad 1000$ \& KPOO San Fran., Calif.
WCNU Grestview, Fla.
W \& KFBI Wiehita, Kans. \& 10000
10000

\hline Pa \& 5000 \& WAVE Loulsville, Ky. 5000 \& \& KHMO \& 5000

\hline R \& 5000 \& KVOB Aloxandria, La. 1000 \& 0 \& WHPE Hİn Point, \& 1000

\hline - \& 5000 \& WCSH Portland, Mains 5000 \& 000 \& WOIA Memphis. Tenn. \& 50000

\hline RRF Wabhington, \& 5000 \& WAMO Aberdeen, Md. 500 \& WCSI Columbus Ind. 500 \& KOPY Allee, \& 1000

\hline NRF Elyria On, \& 1000 \& WESO Southbrldage, Mass. 500 \& KSMN Mason City, lowa 1000 \& \& 0

\hline WKY Okiahoma City, okla. \& 3000
1000 \& K00K Billin gs, mont. 5000 \& KOLA DoRldder, La. 1000 \& \&

\hline \& 1000 \& KJLT No. Platte. Nebr. 5000 \& W810 Baltimors, Md. 1000 \& \&

\hline SEV Sevi \& 3000 \& WAAT Nowark. N.J. 5000 \& KCHI Chillieothe, Mo. 250 \& CHED Edmonton, Alta. \& 1000

\hline KOET Co \& 1000 \& WEBR Buffalo. N.Y.Y 5000 \& KJCF Festus, Mo. 250 \& \& 1000

\hline TTE San Anitonlo, Tox. \& 1000 \& WCHN Norwieh. N.Y. 500 \& KAVN Lexinaton. Nebr. 25000 \& \& 50000

\hline AZ Huntington, W. Va, \& 5000 \& WRCS Ahoskit, N.C. 1000 \& KLAS Las Vegas. Nov. $\quad 5000$ \& WOAP \& 250

\hline LBL Auburndale, w \& 5000 \& WWIT Canton. N.C. ${ }^{\text {W }}$ \& \& WREX Du \& 10000

\hline \& \& WICA Astabuia. Dilo 5000 \& 1000 \& WXRA \& 1000

\hline 0-319.0 \& \& 00 \& 1000 \& \& 1000

\hline C \& 50000 \& KAKC Tulsa, Okis. 1000 \& WORM Savannah. Tenf. 250 \& KWJJ Portiand, \& 0000

\hline Ork \& \& KOIN Portland, Orug. 5000 \& KAmQ Ama \& WILY Pittsburgh. \& 000

\hline CJIB Vernon, B.C \& 100 \& WW SW Plttsburgh. Pa, 5000 \& KMLW Marlin, Tex. 250 \& K \& 000

\hline KFRE Fre \& \& 5000 \& Charlottesvilie, Va. \& \&

\hline Winz mlami, Fia. \& 50000 \& KNOK Ft. Worth, Tax. 1000 \& WMEV Marion, Va. 1000 \& 1090-275.1 \&

\hline MAZ Macon, Ga. \& 10000 \& \& WTWT St \& \&

\hline WMIX Mt. Yernon. III. KIOA Der Moines, lowa \& $$
\begin{array}{r}
1000 \\
10000
\end{array}
$$ \& $\begin{array}{ll}\text { WWYO Pineville w w.Va } & 1000 \\ \text { WHA Madison, wis. } & 5000\end{array}$ \& \& \& 00

\hline Mow \& 1000 \& \& \& KTHS \& 00

\hline SA Charierol, Pa \& 250 \& 980-305.9 \& 108 Angoles, Caill. 10000 \& \& 50

\hline San Juan, P. \& 10000 \& \& WCIL Carbondale, Ill. 1000 \& KNWS W \& 00

\hline N Amarillo. \& 1000 \& CFPL London, Ont. 5000 \& 00 \& \& 0

\hline 950-315.6 \& \& CBY Quabee, Oue 3000 \& KOKA Pittsburgh. Pa. 50000 \& \& $$
\begin{aligned}
& 300 \\
& 300
\end{aligned}
$$

\hline \& \& CKWX Vaneouver, B.C. 5000 \& \& KING S \& 0

\hline n, \& 1000 \& WKLF Clanton, Ala. 1000 \& \& \&

\hline W AMA Montgomery, Ala. \& 500 \& KHUM Eureka, Calif. 5000 \& 50000 \& 1100-272.6 \&

\hline XJK Forrest City, Ark. \& 5000 \& KFWB Los Anseles, Callif. 3000 \& WB2A Springtold, Mass. 1000 \& \&

\hline SA Ft. Smith \& 5000 \& KELN GIenwood Sprgs.: Colo. 1000 \& Katr Corpus Christi, Tax. 50000 \& KJBS San Franciseo, C \& $$
\begin{array}{r}
1000 \\
250
\end{array}
$$

\hline Fi. Walton Bieh., fia. \& 1000 \& Mashinjton, O.C. $\quad 5000$ \& \& WHLI Hempit \& 50

\hline F Orlando, fla. \& 5000 \& WBOP Pensacola. Fiala 500 \& \& \& 5000

\hline GTA Summervilio, G \& 000 \& WKLY Hartwell. Ga. 1000 \& KHVH Honolulu, Hawail 5000 \& WGPA Bethlehem, Pa. \& 250

\hline Bols \& 5000 \& WBBN Perry. Ga, 500 \& WHO Des Moines, Lowa 50000 \& 1110-270.1 \&

\hline KO2E Lewiston, Idaho \& 500 \& WITY Oanvilio, III. $\quad 1000$ \& KIXL Dalles, Tox. \& 1110-270.1 \&

\hline WAAF Chieago, Illi. \& 1000 \& Minneapolis. Mina. 1000 \& \& R \& 50

\hline WXLW indianapolis, Ind. \& 50 \& WAPF MeComb, miss. 1000 \& 1050-285.5 5000 \& \& 0000

\hline KOEL Oelwaing lowa \& 1000 \& KSGM Ste. Genayleva, Mo. 500 \& CFGP Grand Prairie. Alta. 5000 \& \& 1000

\hline BVG Newton, Kans. \& \& WCAP Low \& CKDM Dauphin. Man. 1000 \& $8{ }^{\text {B }}$ \&

\hline RL Boston. Mass. \& \& KOFI Kalispeli, Mont. 1000 \& CHUM Toronto, Ont. Als, 2500 \& WBT Cha \& 50000

\hline detrolt. Mich. \& 5000 \& ${ }_{\text {KICA }}$ KMIN Grants, N. M. Mox. $\quad 1000$ \& WCRI Scottsboro. Ala. 250 \& KBNO Be \& 1000

\hline Hattiesburg. \& 5000 \& Y Troy, N.Y. $\quad 5000$ \& KVWM Show Low. Arlz. 250 \& \& 500

\hline IK Jefferson City \& 100 \& WKLM Whimington, N.C. 500 \& KVLC Little Rock. Afk. 1000 \& Prov \& 250

\hline BF Roc \& 1000 \& Win.-Salem, N.C. 1000 \& KVSM San Mateo. Calif. 1000 \& WHIM Providenee, R. \& 1000

\hline Greansb \& \& WONE Oayton, Ohio 5000 \& KWSO Waseo. Calif. 1000 \& \&

\hline \& 500 \& Weadwood. S. Dak. ${ }^{\text {coser }}$ \& W ISB Crestilew, Fla. 1000 \& 11 \&

\hline WPEN Phil \& 5000 \& Nashvillo, Tonn. 5000 \& WIVY Jacksonvilien. Fla. 1000 \& \&

\hline WWA Spartanourg, \& 1000 \& KFRO Rosenbers. Tex. 1000 \& WHBO Tampa. Fla. 250 \& Serhesda, \&

\hline GG Fran \& 1000 \& KSVC Richfold. Utah 1000 \& $\begin{array}{ll}\text { WJAZ Albany, Ga. } & 1000 \\ \text { WAUG Aunusta. Ga. } & 1000\end{array}$ \& \& 1000

\hline X Denison. Tex. \& 500 \& \& WBIE Mariotta, Ga. 500 \& KCLE Cloburne, Tox. \& 50

\hline RC Houston, Tox. \& 5000
1000 \& WPHE Pralrio du Chion. Wis. 500 \& KNCO Garden CIty, Kans. 1000 \& \&

\hline EL Lubbock. Tex. \& 1000
1000 \& WWOC Manltowoo, Wis. 1000 \& WZ1P Covinton, KY. 250 \& 1130-265.3 \&

\hline Ichmond \& \& \& \& \&

\hline RNA Charieston. \& 5000 \& 990-302.8 \& \& \&

\hline HE Sheboygan, \& 00 \& CBW Winnloes, Man. 50000 \& \& WCAR Detroit. \& 0000

\hline \& \& 1000 \& WGAY SIIver Spri.. Md. 1000 \& WDGY MInneapolis. \& 50000

\hline $960-312.3$ \& \& 1000 \& WPAG Ann Arbor, Mich. 1000 \& WNEW New York. N.Y. \& 00

\hline Calgary. \& 5000 \& WTCB Flomaton, Ala. 500 \& KLOH Pipestone. Minn. 1000 \& 11 \&

\hline CHNS Halifax, N. \& 5000 \& KTKT Tueson, Arlz. $\quad 10000$ \& WACR Columbus, Miss. 1000 \& 1140-263.0 \&

\hline Kingston. \& 5000
5000 \& KECC
KLIR
Denver,
color \& ${ }_{\text {KRBO }}$ \& Cald \& 1000

\hline BRC Birm \& 1000 \& WLCR Torriniton, Conn. 1000 \& WIWG Conway, N.H. 1000 \& St \& 5000

\hline K00L Phoenix, A \& 5000 \& WH00 Orlando, Fla. 10000 \& WMGM Now York. N.Y. 50000 \& KGEM Boise, Id \& 10000

1000

\hline AVA Adple Valley, Callf. \& 5000 \& WOWD Dawson, Ga. 1000 \& WFON Lincolnton, N.C. 5000 \& wSIV Pekin. lli. \& 1000

\hline Oakland, Calif \& 1000
5000 \& WITZ Jasper ${ }^{\text {Wrat }}$ Ind. 1000 \& WWGP Sanford, N.C. 1000 \& KLPA Oklaho \& 1000

\hline Athens, G \& 5000 \& KRSL Russell. Kans. 250 \& KCCO Lawton, oxia. 250 \& \&

\hline BT South Bend, I \& 5000 \& WIMAR New Orleans, La 250 \& KFMJ Tulsa, Okla. $\quad 1000$ \& KORC MInorai Wells. Tex. \& 250

\hline nna \& 5000
1000 \& \& KUBE Pendieton, Oreg. 1000 \& WRVA Richmond, Va. \& 50000

\hline dil \& 5000 \& KRMO Monett, Mo. 250 \& WBUT Butler. Pa. 250 \& \&

\hline AK Rogers \& 5000 \& KSVP Artesia. N.Mox. 1000 \& WRYO Roehester. Pa. 250 \& 1150-260.7 \&

\hline LTF Littio \& 500 \& WEEB Southern Pines. N.C. 1000 \& WLYC Wllliamsport, Pa. 1000 \& \&

\hline ABG Greenwood. \& 1000 \& WJEH Gallipolls, Ohio 1000 \& WSMT Sparta, Tenn. 1000 \& $$
\text { ter. } \mathrm{N} . \mathrm{A}
$$ \& \[

$$
\begin{array}{r}
1000 \\
5000
\end{array}
$$
\]

\hline VS Cape Girardea \& 1000 \& WTIG Massilion, Ohio ${ }^{250}$ \& $\begin{array}{lll}\text { KELT } & \text { Electra. Tex. } & 250 \\ \text { KLEN } & \text { Killeen. Tex. } & 250\end{array}$ \& ch \& 5000

\hline P \& 1000
5000 \& WVBG Phiadelphia. Pa. 1000 \& WBRG Lynehbura. Va. $\quad 1000$ \& CKX Brandon, Man. \& 1000

\hline FTC Kin \& 5000 \& WPRA Mayaguez, P.R; 10000 \& WCMS Norfolk, Va, 1000 \& WBCA Bay Minete. Ala. \& 1000
1000

\hline WST Wooster. 0 \& 1000 \& WAKN Alken. S.C. 1000 \& KNBX KIrkland. Wash. 1000 \& WJRD Tuscaloosa, Ala. \& 5000

\hline GWA Enld. Okl \& 1000 \& $\begin{array}{ll}\text { WNOX Knoxville. Tenn, } & 10000 \\ \text { KWEM Memphis. Tenn. } & 1000\end{array}$ \& WCEF Parkersburg. W.Va. 1000
WRFW Eau Clalro. Wls. 1000 \& KCKY Coolldae, Ar \& 1000

\hline Carlisle. Cana. \& 1000
500 \& KWRM Memphont. Ten. 5000 \& WLIP Kenosha, Whi. 250 \& KXLA Little Rock. \& 00

\hline Saye. Pa. \& 1000 \& KENN Kenody. Tex. 250 \& KWIV Douslas, Wyo. 250 \& KFSG Los \& f. 5000

\hline BEU Beaufort. 5 . \& 1000 \& KFDX Wieh. Falls, Tox. 10000 \& \& KGMC Enplewood. Col \& 1000

\hline Meminnullie \& ${ }_{1000}^{500}$ \& KTUT Tooele. Utah 1000 \& 1060-282.8 \& WCNX Middiotown. \& 500

\hline t. Pieasa \& \& WNRY Narrows,
WANT R
RJehmond.
Va, \& CFCN Calfary, Aita, $\quad 10000$ \& WDEL Wlimington. \& 5000

\hline Kovo Prove. Utah \& 5000 \& WKLJ Sparta. Wis. 250 \& KXOC Chleo, Calli 10000 \& w \&

\hline DBJ Roan \& 5000 \& \& KIFI Idaho Falls, Idaho 250 \& WFPM Fort valliey, \& 1000

\hline KALE Richland, Wash. \& 1000 \& 1000-299.8 \& Now orleans, La. ${ }^{50000}$ \& WJEM Valdosta, Ga. \& 1000

\hline Shawano. \& 1000 \& BW Bridsowater. N.S. 1000 \& WHFB Benton Harbor, mieh. 250 \& KANI Oahu. Hawa \& 1000

\hline 30 \& \& WCFL Chlcago III. 50000 \& KILD Grand Forks, ${ }^{\text {W, Dak. }} 5000$ \& WGGH Marion, 111. \& 5000

\hline -309.1 \& \& KTOK Okla. City, Okla 5000 \& WCMW Canton. Ohlo 1000 \& KWDM Des Moines. lowa \&

\hline KCh Hull. Que. \& \& | KSTA Coleman. Tex. | 250 |
| :--- | :--- |
| KGRI Henderson. Tex. | 250 | \& WRCV Phlladolohla. Pa. 50000 \& WSAL Salina, Kans. \& 1000

\hline WERH Hamilton. Ala. WTBF Troy, Ala. \& \[
$$
\begin{aligned}
& 5000 \\
& 5000
\end{aligned}
$$

\] \& | KGRI Henderson. Tex. | 250 |
| :--- | ---: |
| WHWB Rutland, Vt. | 1000 | \& \& WJB0 Baton Roule. La. \& 5000

\hline KNEA Jonesboro, \& 1000 \& KOMO Seattle, Wath. 50000 \& 1070-280.2 \& WGHM Skowh \& 00

\hline KCHV Voachel \& 1000 \& \& \& WCEN Mt Pleasant, Mleh. \&

\hline KBIS Bakersfield. \& 1000 \& 1010-296.9 \& CKLG N. Vancouver. B.C. 1000 \& WCEN Mt. Pleasant, MI
KASM Albany, MInn. \& . 5000

\hline L Mod \& 1000
1000 \& CBX Edmonton. Alta. 50000 \& CHOK Sarnla. Ont. 5000 \& KASM Albany, Minn. ${ }_{\text {K }}$ \&

\hline WFLA Tampa. F \& 50 \& 50000 \& CJET Smiths Falls, Ont. 1000 \& \&

\hline TAM Decatur. Ga.
VOP Vidalia, Ga. \& 1000

5000 \&	KVNC WInslow. Ariz.	1000
KLRA Little Roek, Ark.	5000	\& $\begin{array}{lll}\text { PI Birmingham. Ala. } & 10000 \\ \mathrm{X} \text { Los Angeles, Callf. } 50000\end{array}$ \& HITE'S RADIO LO \& 171

\hline
\end{tabular}

Ke. Wave Length WPEL Montrose, Pa. WNOW York. Pa, WTMA Charleston, S.C. KFTX Paris. Tex KPAC Port Arthur. Tox.
KEXX San Antonio. Tex KSML seminole, Tox WDVA Danville, Va. WYSR Franklin. Va.
WNRG Grundy, Va.
KWSC Pullman, Wash. KTWMP Meatlie, Wash.

1260-238.0
CFRN Edmonton, Alta. OYBU Cobuf P.i.
WCRY Birmingham. Als.
KPIN Cass Grande, Ariz. KPIN Casa Grande, Ariz. KGIL San Fernando, Cailf, KUBC Montrose. Colo. WWDC Washington, D.C.

$$
\begin{aligned}
& 1000 \\
& 5000
\end{aligned}
$$ WWPF Palatka, Fla. WTJH East Polnt. Ga. WFBM Indianapolis. Ind. KFGQ Boone, lowa

KWOK Hutchinson. Kans. WXOK Baton Rouge, La WALM Alblon. Mass.
KROX Crookston, Minn
KDUZ Hutehinson. Minn.
WGVM Greenville, Miss.
KGBX Springfoid, Mo KVSF Santa Fen, N.Mox. WNDR Syraeuse, N.Y. WGWR Ashoboro, N.C. WOOK Eleven. N.C. WNXT Portsmouin, Onlo
KWSH Wewoka-seminole.
KMCM McMInnville, Oreg. WERC Erlo. Pa.
WPRC Erio. Pa.
Wiso Ponee, P.R.
WMUU Greenville. S.C.
WMOS Chat city, s.C.
WMCH Chureh HIII. Tenn. WDKN Dlekson. Tonn. KBLP Falfurrias. Tex. KWFR San Angelo. Tex
KTUE Tulla, Tex.
WCHV Charlottesville, Va.
WBCR Christlansburg. Va . KWIQ Moses Lake. Wash WVVW Grafton, W.Va. WOKW Sturgeon Bay, Wis. 1000 KPOW Cowell, wyo.

1270-236.1

CHAT Medleine Hat. Alta. CHWK Chilwaek.
CFB Sydney. N.S.
wGSV Guntersville. Ala WPNX Phenix City, A WAIP Prehard, Ala.
KBYR Anehorage, Alaska KBYR Anehorage, Alz.
KCOK Tulara, Calli
WNOG Naples, Fla.
WTAL Tallahasset, F la. KTFA Twin Falls, Idaho WKYR Keyser. W. Va. WHBF Rock Island, ill. WHBF Rock Island
WWCA Gary. Ind.
WORX Madison. ind.
KSCe Liberal. Kans.
WAIN Columbia, KY.
WPRT Prestonsburg. Ky. KVCL WInnfeld, La, WXYZ Detrolt, Mieh. WLSN Loulsville. Miss. KUSN St. Joseph. MO. WHLD Nlagara Falls, N,Y WOLA Walton. N.Y. WMPM Smithtield. N WTSN Dover. N.H. WILE Cambridge, Ón WLBR Lebanon, Pa. KIHO Sloux Falls. S.Dak WLIK Newport, Tenn. KIOX Bay Cliy. Tox. WHEM Bio Spring. Tox. KEPS Eagle Pass, Tex. KFJZ Fort Worth, Tex.
KFJZ Fort Worth, Tex.
1000
1000
1000

$\$ 000$

1000
5000
1000
5000
1000
500
5000
500
1000
5000
1000
1000
5000
1000
5000

5000
1000
1000

$$
1000
$$

$$
\begin{aligned}
& 1000 \\
& 1000 \\
& 1000
\end{aligned}
$$

1000
1000
1000
5000
5000
5000
1000
5000
250
1000

5000

5000
1000
1000
1000
1000
5000
5000
1000
50
1000
5000
1000

5000 1000

1000
1000
1000
1000
1000
1000
1000
500

1000
5000
1000
1000
500

5000

1000
1000
1000
5000

1000
500

5000 | 5000 | |
| :--- | :--- |
| 5000 | |
| 1000 | \mathbf{W} |
| 1000 | |

\qquad
50000
1000
100
1000
1000
100
1000
1000
5000
1000

1000 5000

1000 5000

C.

1000 5000

1000

1000
1000
1000 1000
5000 1000
1000 1000
1000
5000

Va, 1000 WWTB Tampa. Fla
W.P. Ke. Wave Length W.P.

Kc. Wave Length

1310-228.9

CKOY Ottawa, Ont. WHEP Foiey. Ala. KTYL Mesa, Ariz. KBOK Malvern, Ark KTKR Taft. Calif. KFKA Greeley, Colo. WICH Norwich, Conn. WBRO Wayesboro. Ga. WISH Indianapolls,
WJAM Marion, Ala. KOKX Keokuk, Iowa WLiX Twin Falis, Idano KIKS Sulphur, La KUZN W. Monroe, La.
WLOB Portland, Malne KRBI St. Poter, Minn.
WORC Woreester. Mass.
1000
5000
1000
1000
1000
5000
5000
5000
5000
500
1000
5000
5000
1000
1000
5000
1000
5000
1000
500

1000	W
1000	W
5000	WC

1000 C

$\begin{array}{ll}1000 \\ 1000 & \mathbf{W} \\ \mathbf{W}\end{array}$

5000

10000
5000
5000
1000
5000
1000

1000 1000

00

$$
\begin{array}{l|l}
1000 & \text { KCOB Nowton, Jowa } \\
5000 & \text { KSOK Arkansas City, Kans. } \\
1000 & \text { WHLN Harlan, Ky. }
\end{array}
$$

KFSB Joplin. Mo

KFBB Great Falls, Mont.
WJLK Asbury Park. N.j.
WCAM Camden. N.J.
WTLB Utiaa, N.Y. WISE Asheville. N.C WTIK Durham. N.C.
KNOX Grand Forks. N. Dak WFAH Allance, Ohnio
KNPT Nowport, Oreg. KNPT Nowport, Oreg.
WBFD Bedford, Pa. WBFD Bedford, Pa.
WSGA Ephrata, Pa.WNAE Warren, Pa.
WDK KInestree, S.CWDOD Chattanooga,WOXI Jackson, Tenn.
KZ1P Amarlilo, Tex.KRR Amarilo, Tex.
WR Dallas. Tex.WFCR Fairfax. Va.
WGH Newoort Nows. Va.
KARY Prosser. Wash.KARY Prosser. Wash.
WIBA Madlson, WIs.

Va, 1000 WAVZ New Haven, Conn.
$W . P$
5000
1000
5000
500
1000
5000
1000
1000
1000
5000
1000
5000
5000
1000
1000
250
1000
1000
5000
5000
500
5000
1000
1000
1000
1000
5000
1000
1000
5000
1000
1000
1000
1000

Ke. Wave Length W	W.P.
WRio Rio Piedras, P.R,	500
SC Columbla	1000
KELO Sloux Falls. S. Da	5000
WKIN Kingsport. Tonn.	5000
KVNC Colo, city, Tex.	1000
KSIJ Gladewater, Tex.	100
XYZ Houston, Tex.	50
KDYL Salt Lake city, Utah	tan 500
WLLY Richmend.	1000
KXRO Aberdeen. Wash.	1000
Wa	h. 1000
330-225.4	
CBH Hallifax.	100
ROS Seottsboro, A	
KFAC Los Angeles. Call	5000
WARN Ft. Pierce, Fia.	100
WEBY Militon, Fla.	
WMEN Tallahassee, Fla.	5000
WMLT Dublin, Ga.	10
WEAW Evanston, III.	1000
WRRR Rockford, III.	100
WJPS Evansville. Ind.	500
KWWL Waterloo, lowa	5000
KFH Wlehita, Kans.	
WMOR Morehead. Ky.	10
KVOL Lafayette, La.	1000
WASA Havre deGrate, M	d. 1000
WCRB Waltham, Mass.	5000
WBBC Flint, Milh.	1000
WLOL Minneapolis, Min	5000
WJPR Greenville, MIss.	1000
KGAK Gallup. N.Mex	5000
POW Brookiyn.	5000
WEVD Now York. N.Y.	5000
HAZ Troy, N.Y.	
WFIN Findlay. Ohio	000
KPOS Portland, Oreg.	5000
WIKK Erie, P'	5000
Conw	
C Greenville. S.c.	5000
WAEW Crossville. Tenn.	
TRO Dyersburg Tent	500
MIL Cameron. ${ }^{\text {tox. }}$	
KSWA Graham, Tox.	50
Kingsvilie. Tex.	100
DOK Tyler, Tex.	50
2 New	
WHBL Sheboygan, W	250
KOVE Lander, Wyo.	

1320-227.1
CKNW Now Westminster.
CJSO Sorel. P.a.
WEZB Homewood. Ala.
KRLW Walnut Ridge. Ark.
KRFC Roeky Ford. Colo.WATR Waterbury, ConnWHIE Grifn. Ga.
W KAN Kankakee,
KLWN Lawrente, Kans.WBRT Bardstown. Ky.W
KVHL Homer. La.WARA Salisbury. Md,WILS Lansing, MichWDMS Marquette, Mith.WCPC Houston, Mlss.KXLW Ciayton. Mo.Richmond HillWTLS Tallassee. Ala.KWKw Pasadena, CaiKYNO Fresno CalltKVOR Colo. Spros., Colo.合

$1340-223.7$

CFSL Weyburn, Sask.
CHAD Amps. Que.
CJLS Yarmouth. S.
CHRD Drummondvile, que.
CJQC Quebec. Que. CJOB WInnlpeg, Man.
CKOX Woodstock, Ont. WKUL Cullman, Ala. WGWC Selma, Ala. WFEB Sylacauga, Ala. KIBH Seward, Alaska KRUX Giendale, Ariz.
KNOG Nogales. Arlz. K8TA Batesvilte, Ark. KAGH Crossett, Ark.
KBRS Springdale, Ark. KENL
KMAK
Fresta, Callf.
Calif. KAVL Lancaster, Calif. KWSD MI. 8hasta. Calif.
KSFE Noedles. Calif: KSE Needies, Calif.
KMOR Oroville, Callf.
KOAN Oroulle, Call KCMJ Palm Sprgsit Calif. KIST Santa Barbara. Callf. 250 KSMA Santa Maria, Callf. 2 KDEN Denver, Colo. KDEN Denver, Colo. WNHC Now Haven. Conn. WOOK Washlngton, D.C. WROD Daytona Beh.i. Fla. WDSR Lake City. Fla.
WTYS Marianna. Fla. WOXT Palm Beach. FIa. WICM Sebring. Fla. WGAU Athens. Ga.
WAKE Attanta, Ga. WBBE Augusta. Ga.
WGAA Codartown. G WGAA Codartown, Ga. WWGS TIfton, Ga. KPST Preston. Idah W JPF Herrin. III. W SOL Jollet. Ili.
WBIW Bedford, Ind WTRC Elikhart, Ind.
WLBC Munele. Ind. KROS Clinton, lowa
KLIL Estherville. Iowa KCKN Kansas City. Kans. 250 KSEK PIttsburg. Kans. WCMI Ashland. Ky. WEKY Rithmond. Ky. $\begin{array}{r}250 \\ 250 \\ \hline 250\end{array}$

Re．Wave Length （1340－223．7）
KRMD Shreveport，La． WFABM Augusta，Maine WGAW Gardner，Mass． WNBH Now Bedford．Mass． WBRK Pittsfleld，Mass．
WLEX Bad Axe，Mich． WLEX Bad Axe，Mich．
WLAV Grand Rap．，Mich WBSE Hilisdale，Mich． WAGN Menominee．Mich WMBN Petoskey．Mich． WEXL Royal Oak．Michinn KDLM Oetroit Lakos．M
WEVE Eveleth，MInn．
KROC KROC Rochester，Minn． KWLM Willmar．Minn． WJMB Brookhaven，MIss． KXEO Laurel．Miss． KXEO Mexico，Mo
KICK Springfleld．Mo KCAP Helena，Mont． KPRK Livinoston，Mont KRIL Miles City，Mont． KBTK Missoula，Mont． KFGT Fremont．Nebr． KGFW Kearney，Nebr． KSID Sidney．Nebr． KORK Las Vegas，Nev． WMID Atlantic Cit WMID Atlanilic City，N．J． KVER Albuquerque，N．Mex． KSM Silver City，N WENT Gloversville． WIOC Jamestown $\mathcal{N} . \mathrm{Y}^{2}$ ． WMSA Massan，N．Y． WALL Misdictown，N．Y． WIRY Plattsburg，$N . Y$ ． WOXF Oxford N．C．C WHED Washington．N．C WAIR Winston－Salem，N．C． WATG Ashland，Ohlo WOUB Athens，Ohio WIZE Springfield Ohio KIHN Hugo，Okla
KOCY Okla．City．Okia． KLOO Corvallis．Ore． KIHR Hood River，Oreo． KFIR North Bend，Oreg． WFBG Altoona，Pa．Pa． WEMR Emporlum，P WSAJ Grove City．Pa． WKRZ Oll city，Pa， WRAW Reading．Pa． WBRE WIIkes．Barre，Pa． WWPA WIllamsport，Pa WGRF Aguadilla，P，R． WHAN Charleston，S．C WRHI Rock HIII．S．C． WSSC Sumter．S．C． KIJV Huron．S． 0. KRSD Rapid City，S．Dak． WBAC Cloveland，Tenn． WKRM Columbia，Tonn WGRV Greenville．Tenn． WKGN Knoxvllie：Tenn． WHHM Momphis．Tenn： WCDT Winchester，Tenn． KAND Corsleana，Tex KWKC Abllene．Tex KNAF Fredericksburg．Tex KDUB Lubbock．Tex． KRBA LufkIn，Tex． KVKM Monahans．Tex． KPDN Pampa，Tex． KOLE Port Arthur．Tex． KTXL San Angelo．Tex． KVIC N．of Vietorla．Tex． KJAM Vernal，Utah WTWN St．Johnsbury．Vt． WSTA Charlotto Amaile．V．I WKEY Covington．Va． WHAP Hopewell．Va
WIMA Orange，Va．
KAGT Anacortes，Wash． KPKW Pasco，Wash． KAPA Raymond．Wash． KSPO Spokane．Wash． KMEL Wenatchee．Wash． WHAR Clarkshurg，W．Va， WEPM Martinshurg，W．Va． WMCD Welch，W．Va． WLDY Ladysmith，Wis． WFHR Wis，Rapids．Wis Kow B Laramie，Wyo． KOWB Laramie，wyo．
KWOR Worland，wyo．
1350－222．1
CHOV Pembroke，Ont．
CJOC Dawson Creek
CJDC Dawson Creek．B．C．$\underset{\substack{200 \\ 200}}{\substack{200}}$

W．P．｜Ke．Wave Length
250 CHGB St．Anne de la

250

Potatiere，Que．
CKEN Kentvilio，N．S
CKTR Three Rivers，Que． KWFC Hot Springs，Ark． KCSB San Bernardino，Call 0 KGHF Pueblo Colo． WNLK Norwalk，Conn． 250
250
WPCT Putnam，Conn．
WDF Dade City，Fia 250 KORE Warner Robblns，Ga． 250 KRLC Lowiston，Idaho WEEK Peoria，III． 250 WIOU Kokomo，ind． KRNT Des Moines，lowa KMAN Manhattan，Kans． WLOU Louisville．KY．
WSMB New Orleans，Le WSMB New Orieans，
WHMI Howell．Mich．
WKOZ WKOZ Koselusko．Miss．
KCHR Charleston Mo． KCHR Charleston．Mo，
WLNH Laconia，N．H． WLNH Laconia，N．H
WCBA Corning，N．Y． WHIP Mooresville，N． WCHI Chillicothe，OhI KRHD Duncan，okla． KTLQ Tahlequah， WPFD Darilington，S．C．
WGSW Greanwood，S． KTXJ Jasper，TAX．S．C． KCOR San Antonio，Tex WBLT Bedford，Va．
WNVA Norton， WSAP Portsmouth，Va．
WPDR Portage，Wis．

1360－220．4

WWWB Jasper，Ala．
WMFC Monroeville，Aia． WELR Roanoke．Ais． KFIV Modesto，Calif KRCK RIdgecrest，Calif．
KGB San Djego，Calf．
WDRC WDRC Hartford，Conn
WOBS Jacksonville，Fl WKAT Mlami Beach，Fla． WIOD Sanford，Fla，
WLBK OoKalb，III： WVMC Mt．Carmel，III． KSCJ Sloux City．Iowa
KBTO EI Dorado Kans KBTO E Dorado，Kan
KDBC Mansfold La．
KVIM Now Deria， KVIM Now Iberia，La． WLYN Lynn，Mass． WGFG Kalamazoo，Mich．
WKMI Kalamazoo，MIeh． KLRS Mountaln Grove，Mo． WNNJ Newton，N．J． WKOP BInghamton．N．Y． WMNS Olean．N．Y． WSAI Cincinnatl，Ohio KRTV Hillshoro．Oreg．
KUIK Hillsboro KUIK Hillsboro，Oreg． WPPA Pottsvillo，Pa． WLCM Lancastor．S．C．
WNAH Nashville，Tenn． KRAY Amarlllo．Tox． KACT Andrews，Tox．
KRIS Corpus Christi， KRIS Corpus Christi，T
KREL Baytown．TEx．
KXOL Ft．Worth．Tex． KXOL Ft．Worth，
WBOB Galax，V a． WHBG Harrisonburs，Va． KMO Tacoma，Wash． WHJC Matawan，W．Va．
WBAY Green Bay，Wis． WMNE Menomonie．Wis． 1370－218．8
KBUC Corona，Calif， KGEN Tulare，Calif． WCOA Pensacola，FIa． WNTM Vero Beach．Fit． WBGR Jesup，Ga．
WKLE Washington． WTTS Bloominoton．Ind WGRY Gary，Ind． KGNO Oodpecity，Kans． KAPB Marksville．La． WEBB Dundalk，Md． WGHN Gr＇d Haven，mich． KSUM Falrmont，Mínn． KDIO Ortonville，MInn WDOB Canton，Miss．
KWRT Boonville，Mo．
KCRV Garuthersvillo，
KXLF Butte，Mont． a． 5x ． is．

W．P．

＜

Wove Length W CKCY Sault Ste．Marie
CKFH Toronto，Ont．
CKRB Ville St．George，
CKRN RouYn Quen

Ont．
Que．
25d 2551
250
250
250 CKSW Swift Current，Sask． WXAL Demopoiis，Al WFPA Ft．Payne，Ala． WGYV Greenvilte，Ala，
WJLD Homewood，Ala． WJHO Opelika，Ala． KCLF Clifton Araska KONI Phoenix，Ariz． KONG Phoenix，Ariz
KTVC Tucson，Ariz． KVOY Yuma，Ariz．
KELD EI Dorado， KCLA Pine Bluf，Ark．
KWYN Wynne，Ark． KRE Berkeley，Calif． KREO Indio，Callf．
KSOA Redding，Calif． KCOY Santa Maria，Callt．
KSPA Santa Paula，Calif． KUKI Ukiah．Calif． CFDA VIct iavilie，
CKPC Brantford，Ont． CKLC Kingston，Ont．
KBVM Lancaster，Calif． KBVM Lancaster，Call
KGRO Malvern，Ark． KNLR N．Litti Rock，Ark
KGMS Sacramento，Calif． KGMS Sacramento，Cali
KSBW Sallnas，Callf． KSBW Salinas，Callt．
WAMS Wilmington，De WTSP St．Petersburg，FJa．
WAOK Atlanta，Ga． WAOK Atlanta，Ga． WGYV Greenvilie，Ala KKJQ Ft．Wayne，In
KCIM Carroll．Iowa WMTA Central City，Ky
WWKY WInchaster，Ky． WEND Baton Rouge，Ky． WTNH Bort Hurong，Mlah．
1000
1000
88.

1000 1000

1000
1000 5000
5000
5000
500 500
500
500 1000
5000 5000
500
1000 1000
1000 WNLA Indianola，Miss WTUP Tupelo，Miss． KUDL Kanses Clty，M KWK St．Louls．Mo． WAWZ Zarepheth．N． WBNX Now York．N．Y
WLOS A WLOS Ashevilie．N．C．
WTOB WInston． WPKO Waverly，Ohio KSWO Lawron．Okla KMUS Muskogee，OKla． KSRV Ontario，Oreg． WACB Kittanning．Pa． WAYZ Wayneshoro，Pa WNRI Woonsocket，Ra WSYB Rutland，Vi WAGS Bishopville．S．C． KOTA Rapid City，S．Dak KHON Honolulu，T．H． KBWD Brownwood，Tox． KBWD Brownwood，
KTSM EI Paso，Tex． KMUL Muleshoe，Tex KBOP Pleasanton．Tex． KRKO Everett．Wash WBEL Boloit．WIs．
$1390-215.7$
WSPC Anniston，Ala． KAMO Doquet，Ark
Kogers，Ark．
KGER Long Beach, Calif.
KTUR Turlock, Callf.
KFML Denver, Colo.
WJCD Seymour. Ind.
WGES Chlcago, III.
WFIW Fairtiold, III.
KCLN Clinton, lowa
KCBC Des Molnes, lowa
KNCK Concordia, Kans.
KNOE Monroe. La,
WCAT Orande, Mas
WCER Charlotte, Mich.
KRFO Owatonna, Minn.
WPLM Plymouth, Mass,
WDEG Gulfport, MIss.
咼合
WEOK Pouphkeepsle, N.Y
WRIV Rlverhead, N
WFBL Syracuse,N. Y
WEED Rocky MI., N
WFBL Syracuse, N.Y.
WEED Rocky Mt. N.
WFNC Fayettevilis, N.C.
2
$?$
KRLN Canon Clity, Colo.
KDTA Delta. Colo.
KFTM Ft. Morgan, colo.
KBNZ La Junta. Colo.
WSTC Stamford, Conn.
WFTL Ft. Lauderdale, Fla.
WIRA Ft. Plerce, Fla.
WRHC Jacksonville, Fla,
WPCF Panama Clty, Fla.
WPCF Panama Clt
WPRY Perry, Fla.
WPRY Perry, Fla.
WTRR Sanford, Fla.
WSGC Elberton, Ga.
WSGC Elberton, Ga
WNEX Macon, Ga
WNEX Macon, Ga.
WNEX Macon, Ga.
WMGA Moultie, G.
WCOH Newnan, Ge
WCOH Newnan, Ge
WGSA Savannah, Ga.
WGSA Savannah, Ga.
KART Jerome, Idaho
KRPL Moscow, Idaho
KRPL Moscow, Idaho
KSPT Sandpoint, Id aho
KSPT Sandpoint, Id aho
WDWS Champaign, III.
WDWS Champaign, III.
WGIL Gaiesburg. III.
WEOA Evansvilie. Ind.
WEOA Evansvilio. Ind
WBAT Marion, Ind.
KCOG Centorvilie, lowa
KVFD Fort Dodge. lowa
KYOE Emporia, Kans.
KVOE Emporia, Kans.
KTSW Emporia, Kans.
KAYS Hays, Kans.
WAYS CyN Cynthlana, Ky
WIEL Elizabethtown. Ky.
WFTG London, Ky.
WFTG London, Ky.
WFPR Hammond, La.
KAOK Lake Charles, La.
WROO Augusta. Maine
WIDE Blddeford. Maine
WWIN Baltimore. Md
WWIN Baltimoro, Md.
WALE Fall River, Mass
WHMP Northampton. Mass.
WELL Battlo Creek. Mich.
WJLB Detroit. Mich.
WHDF Houghton. Mich.
WMAB Munising. Mich.
WSAM Saglnaw. Mich.
WSJM St. Joseph, Mleh.
WTCM Traverse Clty. Mich. ${ }_{2} 5$
KMHL Marshall, MInn.
WMIN Mpls.-St. Paut. Minn, 2

5000°	WHEB Boonevlile, Miss.
500	WNAG Grenada, Miss.

 WFOR Hattiesburg. Miss.
 WJQS Jackson. Miss.
 WMBC Macon, Miss.
 KMBC Macon, Miss.
 KSIM SIkeston, Mo.
KTTS' Springfiaid. Mo.
KFRU Columbla. Mo.
KXGN Glondive. Mont.
KXLK Great Falls, Mont.
KXLK Great Falls. Mon
KCOW
KCOW Alliance. Nebr
KLIN LIncoln, Nebr.
KPTL Carson CIty, Nev.
KBMI Henderson, Nev.
KBMI Henderson, Ney.
KWNA Winnemuces
KWNA Winnemucca, Nev.
WTSL Hanover, N.H.
WTSL Lebanon, N.H.
KGFL Roswell, N. Mex.
KTRC Santa Fe, N. Mex.
$\begin{array}{ll} & 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ & 250 \\ & 250 \\ & 250\end{array}$
KTRC Santa Fe, N. Mex.
Consequentes,
Now. Moxico
ri. N. Mex.
KTNM Tucumcari N Mex
250
250
KTNM Tucumcari. N. Mex.
WOND Pleasantvilie, N.J.
WOND Pleasantvilie. N.J.
WABY Albany. N.Y.
WABY Albany. N.Y.
WBNY Buffalo, N.Y.
WOHP Bellefontalne, Ohlo
WFMJ Youngstown, Ohio
WFM Youngstown
KCRC Enld, Okla.
KCRC Enld, Okla.
KSLM Salem, Oreg.
KSLM Salem, Oreg.
WLAN Lancaster, P.
WHPB Bolton. S.C.
WHPB Belton, S.C.
WCSC Charieston, S.C.
WCSC Charienion, S.C
WUS Jackson. Tenn.
KULP EI Cempo. Tex.
KULP EI Campo, Tex.
KBEC Waxahachic, Tex.
KBEC Wexahachic, Tex
WEAM Arljngton. Va.
WEAM Arljngton, Va.
WWOD Lynchburg, Va.
WWOD Lynchburg, Va
KYAK Yakime, Wash.
KYAK Yakima,
$1400-214.2$
CKBC Eathurst. N.B.
CJFP. Rivlere du Loug.atif．
合号

000

1000
8000

Ke. Wave Length	. P.	Wave Length W.P.	Ke. Wave Length W	ave Length	.P.
WEST Easton, Pa.	250	N	F Granby, P.Q.	g. Pa,	
WIET Erio.	250	WALY Horklmer, N.Y. 1000	250		
Harris bura.	250	WLNA Peokskill, N.Y. 1000	WHMA Annlston, Ala. 250	WPAM	,
ohnstown,	50	WYOT Wilson, N.C. $\quad 1000$	WBCD Bessemer, Ala. 250	WMAI	0
St. ${ }^{\text {d }}$		KTJS Hobart. Dkla. 250	WDIG Dothan, Ala. 250	WJPA Washingt	
Seranton.	250	KYNG Coos Bay, Oreg. 1000	WFUN Huntsville. Ala. 250		
K William	250		WLaY Muscle 8 hoals Clity, Ala. 250	Wria Ca	0
Sa		WCED DuBols. Pa. 5000	KLAM Cordova, Alaska 250	WWRI W. Warwlek. R.I.	-
	250	WCRE Cheraw. S.C. 1000	250		
-	250	E Cheraw, S.C. 1000	WT Douglas, Ariz. 250		
JAN Spartanburg.	250	1000	KNOT Prescott, Ariz. 250	B	250
JZM Clarksville.	250	WKSR Pulaski. Tenn. 1000	250		
UB Cookeville,	250	KFYN Bonham. Tex. 250	KGR F Fayotteville, Ark. 250		250
Kıngsport, Tenn.	250	KGNB New Braunfels. Tex. 1000	KEMA Mena. Ark. Ark. 250		
AP Maryville Tenn.	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	KGNB New Brauniols. Tex. 1000	KYOR Biythe. Cailf. 250	KYNT Yankton,	50
KRUN Ballinger, To	250	WWSR St. Albans, Vt. 1000	KPAL Palm springs, calit. 250		
TXC Bis S	250	WDOY Gloucestor, Va. 1000	KTIP Portervilie, Calif. 250		
NO Corpus Ch	250	KITI Chehalis, Wash. 1000	Francalif. ${ }^{\text {arm. }} 250$	WTRD Dyersburg. Tenn.	50
LUF	250	KPIY Plymouth, Wls. 500	KVEN Ventura, Calif. 250	WLaF LaFollette. Tonn.	100
KGVL Groenvilie,	250		KAGR Yuba city, cailf. 100	WCRK Morristown, Ten	250
E facksonvilio, Tox			KGIW Alamosa, Colo. 250		
N Pecos. Tex.	$\begin{array}{r} 250 \\ 250 \end{array}$	1430-209.7	KYOU Greeley, Colo. 250	KRIC Beaumont. Tox.	50
KYOP Plainviow, Tox.	250	rouph. Ont. 1000	wile Wllmington. Del. 250	KCTI Gonzales. Tex.	
KDWT Stamford.	250	ty. Ala. 000	WOL Washlngton, D.C. 250	KMBL	
KTEM Tomple. T	250	KHBM Montirello. Ark. 1000	WMF D Daytona Beach, Fla. 250	KCYL Lampasas. Tex.	
KTFS Texarkana	250	KAMP El Contro, Calii. 1000	W8KB Mlami, Fla. 250		
Uvalde. ${ }^{\text {P }}$	250	KARM Fresno, Callf. 5000	WB8R Pensacola, Fis 250	KNET Palestine. Tex	250
XX Provo, Utah	250	KALI Pasadena, calf. 5000	W8PB Sarasota. Fla. 250	KSNY Sny	
Bur	250	KOSI Aurora, Colo. $\quad 5000$	WSTU Stuart. Fila. 100		
NA Charlot	250	WLAK Lakoland, Fia. 3000	WTNT Tallahassee, Fla. 250	WTSA Brattloboro, Vt.	250
LDW Portsm	250	WGFS Covington. Ga. 1000	250		
So	250	WRCD Dalton. Ga. 1000	WBHF Cartersville, Ga. 250	WREL Lexing	250
WINC Winchester,	250	WIRE Indianapolis, Ind. 5000	WCON Cornol	WMVA MartIn	
	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	KASI Ames. lowa 1000	WKEU Griffn, Ga, as 250		250
Ta	250	WKIC Hazard, Ky. 1000	WCCP Savannah, Ga. 250	KBKW Aberde	
Yak	250	KMRC Morgan City. La, $\quad 500$	KEEP Twin Fellis. Idaho 250		250
BLK Clar	250	WNAV Annapolis. Md. $\quad 1000$	WHFC Clcero, Ill	K	
R	250	WHIL Mout Mo. 5000	WKEI Kowanee. III, 100	K0	
			250		
WBTH Wiliam	250	WBRB Mat clomens, Mith. 300	WANE Ft. Wayne. Ind. 250	WWNR Beckley. W. Wa.	
Ashl	250	KRGII Grand Island. Nebr. 1000	WA8K Lafayette, Ind. 250	.	- 250
W812 Esu Clai	250	KALV Alva. Mleh. Nobr 5000	incennes. Ind. 250		
WRJN Ratine.	250	WNIR Newark. N.j. 5000	KCig Codar Raplos, 1000		50
D8 Reodsburg. Wlis,	250	WENE Endicott. N.Y. 5000	KWBW Hutchinson, Kans. 250	w	250
SaU Waus	250	WMNC Morganton. N.C. 5000	WTCO Campbellsvilie, Ky. 1000	WrCo	250
KATI Caspar. Wyo KODI Cody, Wyo.	250	WRXO WFOB Foxtoria, Whinio	$\begin{array}{lll}\text { WNKY Neon, Ky. } \\ \text { WP } & 250 \\ \end{array}$	KBBS	
		WCLT Newark, Ohio 500	WPAD Paducah, Ky, 250		
1410-212.6		KTUL Lookout Mountain.	250	1460-205.4	
CFUN Vaneouver, B.C	1000	KGAY Salem, Oreg. 5000	WAGM Presquelisie. Maine 250		
CHLP Montreal. Que.	1000	WVAM Altoona, Pa. 1000	WRKD Roekland, Malne 250		0
WALA mobile Ala.	5000	WBLR Batesburs. S.C. 5000	WRUM Rumford, Maine 250	K	
K	500	KBRK Brookinss, S. Dak. 500	WKTQ South Paris. Maine 250	KAFA	1000
K	1000	WHER Momphls,	WT80 Cumberland, Md. ${ }^{250}$		
Bake	5000	WDBL Springneld, Tenn. 1000	WATZ Alpena Township, inieh. 250	WMER Jacksonvilite, Fia.	
Rediands, Cal	1000	KSTB Breckenrldge, Tex. 1000	WHTC Holland, Mich. 250		0
WPOP Hartford, Co	5000	KCOHo mouston, Tex.	WMIG Iron Mtn., Mlch. 250	Wror Car	
KCOL Ft. Collins, Colo. WDOV Dover, Del.	1000	KBRC ${ }^{\text {mid. }}$, Vernon, Wash. 1000	WKLA Ludington, Mich. 250	KSO Des Molnes. 10	00
MYR Ft. M Mers. Fla.	5000	WFIP Woirton, W.Va. 1000	WHLS Port Huron. Mich. 250	.	
Fo.	1000	WBEV Beaver Dam, Wls. 1000	KATE Albert Lea, MInn. 250	WRVK Mt. Vern	00
Elin. 111.	1000		KBUN Bemldji. Minn. 250	Wall	000
\% Tayorville.	1000	1440-208.2	KBMW Breckenrldge, Minn. 250	KBSF Springhlil.	1000
KLEM Limars. lowa	100	5000	WELY Ely. Minn. Minn. ${ }^{\text {K }}$	-	
B Wlehlta. Kans.	1000	KPOK Seottsdale. Arla. 1000	KFAM St. Cloud. Minn. 250	${ }^{N} \mathrm{~N}$ Pion	00
Bowllng Green,	5000	KDKY Little Rock, Ark. 1000	WROX Clarksdale, Miss. 250	KRNY Kearney, Nebr	5000
	1000	KVDN Napa, Calf. KPRD Riverside, Callf. $\quad 1000$	WCJU Columbla. Miss. $\quad 250$	KENO Las Vegas N	1000
	500		WJXN Jackson, Miss.	WOK0	5000 500
WFCB Dunkirk. N.Y.	500	WABR Winter Park. Fla. $\quad 1000$	WNAT Natchez, Mlss. 250	Roc	
WEGD Coneord. N.C.	1000	WWCC Bremen. Ga. $\quad 500$	WRDB Wost Point. Mlss. 250	Fuquay Sprg	1000
WSRC Durham. N.C.	500	WGIG Brunswick, Ga, 1000	KIfK Kirksville, Mo. ${ }^{\text {a }}$, 250	Ma	
ING Dayton, Dh	5000	KWIK Posatello, Idaho 1000	KOKO Warrensburg, Mo. 250	S Colum	00
		WPRS Parls, 110	KxL Bozeman, mont 250	WPVL Palnesville, ohlo	
QV pitts bi	5000	WGEM Qulncy, III. 1000	WMBH Jopiln, Mo. 250	WCM Hars	
KBUD Ath	250	WROK Rookford, III. 500	KWPM West Plains, Mo. 250	WCCU ${ }^{\text {ar }}$	
LB Clovoland, T	500	WPGW Portiand, ind. 500	KXLL Mlissoula, Mont. 250	WJAK Jackson. Tenn.	1000
KXIT Dalhar		KCHE Cherokee. Jowa 500	KWBE Beatrice, Nebr. 250		
RIG Odess	1000	KJAY Topoka. Kans.	KCSR Chadron, Nebr. $\quad 250$		
KBAL San Saba		$\begin{array}{ll}\text { WKLX Parls, Ky. } & 1000 \\ \text { KMLB }\end{array}$	KONE Rono, Nev, 250		1000
KNAL Vletorla,			WKXL Concord. N.H. N.Y. ${ }^{250}$	WRAD Radford. ${ }^{\text {Wa. }}$	250
IS Roan	1000	WAAB Worcester, Mass. WBCM Bay City. Mleh. W00	WFPG Atiantle City. ${ }^{\text {W.Y. }}$	KIMA Yakima, Wash.	5000
KBH LaCrosse, Wis.	5000	WCHE Inkster, Mich. 500	KLOS Albuquergue, N.Mex. 250	W	
KWYO Sharldan, Wyo.	500	KEUE Minneapolls, Minn. 5000	KENM Portales. N.Mox. 250		
		K FJM Grand Forks, N. Dak. 500	WHOL Alleg	1470-204.0	
0-21			KLmX Clay	C	
OM Saskatoon, Sask.	5000	WBUY Lexington, N.C. 5000		KBLX	
KPDC Potahontas. Ark.	1000	WHHH Warren, Ohlo 5000	WWSC Gie		500
KSTN Stockt	1000	KMED wedford. Drog. 1000	WKIP Poughkeepsio.	WMMW Merlden, Conn.	1000
WLis Did Sayb	500		WKAL Rome. N.Y.	W DCL Tarpon Sprgs., FI	3000
OBF Dolray Bet	500 1000	WCDL Carbondale. Pa. WGCB Red Lion. Pa. Pr	WATA Boone. N.C. ${ }_{\text {WGNC }}$ Gastonla. N.C. $\quad 250$	WAAG Adel, Ga.	1000
BL Columbus, Ga.	5000	WGDK Greenvilio, s.C. 5000	W BLA Elizabethown. N.C. 100	WRGA Rome, Ga.	5000
LET Toctoa, Ga	5000	WZYX Cownn, Tenn. $\quad 1000$	WHVH Henderson, N. C. ${ }^{250}$	WMBD Peorla. Ill.	5000
WINI Murahysboro.	500	WHDM Moknnzo,	WHKP Hondersonvillo, N.C. 250	WCBC Anderson, Ind.	1000
iMS mithigan City. Ind.	1000	KFDA Amarillo, Tex. 5000	WHIT New Bern, N.C. 250	KTRI Sloux City, lowa	5000
OC Davenport, Lowa	5000	KEYS Coraus Christi. Tex. 1000	KEYS Wllliston. N.Dak. 250	KARE Atehlson. Kans.	1000
CA Ashland, Ky.	5000 1000	KDNT Denton, Tex. 5000	WJER Dover. Ohio	WSAC Radeliff. Ky.	1000
$\mathrm{H}^{\mathrm{H} \text { arpods burg, }}$		WKLV Blackstone, Vat 5000	WMDH Hamilton. Dhio	KPLC Lake Charles. La.	5000
Owens boro. Ky. ${ }^{\text {a }}$	1000	KITN Dlympla, Wash, 500	WLEC Sandusky Dhlo 250	WLAM Lowlston. Maine	5000
JCK Junetion City,	1000	WHIS Bluefteld, W. Va. WIPG Green Bay, W/s. 5000	KWHW Altus, 0kla,	WTTR Westminster. Md.	1000
BSM New Bedford. Mass.	. 1000	WJPG Green Bay, Wis. 5000	KGFF Whawnee,	WNBP Nowburyport. Mas	00
BEC Pittsfield,	1000	-206.8	KWRD Coquille. Dres. 250	W	
AMM Fllint. MI	500	206.8	KORE Eupene	WKLZ Kalamazoo, Mlch.	
KTOE Mankato, Minn.	5000	CBG Gander. Nfld. 250	KFLW Klamath Fals, Ores. 250		
SUH ${ }^{+}$Dxford. Miss. QBC Vickshurg.		ndsor, N.S. 250 	KBPS Portland. Oreg. 250	WHITE'S RADIO LOC	175

Ke. Wave Lengt (1470-204.0)
KANO Anoke, Minn WCAI Brookhavon, Miss. KGHM Brooknold, Mo KTCB Malden, WTKO lthaca, N.Y. WPDM Potsdam. N. Y WBIG Greansboro, N. \mathbf{W}. WTOE Spruce Pine, N.C. WHO Toledo Onio KVIN Pinits Valley, okla. WSAN Allentown. Pa . WFAR Farrell. Pa. woic Columbia. S.c. WSOK Nashilile, Temn. KRBC Ablione, Tox. KWRD Henderson, Tex. KELA Centralia, Wash WPLH Huntington, Wiva KSPR Casper, Wya, Wis

1480—202.6

WABB Mobile, Ala.
KGLU Safford, Ariz.
KIEM Eureka, Callf KWIZ Santa Ana Callf. WAPG Arcadia, Fla WYZE Atlanta. Ga. WROW Augusta. Ga WTHI Terre Haute. Ind, WRSW Warsaw. Ind. KLEE Ottumwa, fowa WKOA Hopkinsville, Ky WLEC Jonesville. La. KJOE Shreveport, La WSAR Fall River, Mass
WMAX Grand Raglds. Michigan
KAUS Austin, Minn. KGCX Sidney, Mont. Kw, KWEW Hobbs; N. Mex. WLEA Hornell, N.Y. WHOM New York. N. Y WWOK Charlotte. N.C. WAGR Lumberton. N.C. WHBC Canton. Ohio WCIN CInelnnati, Ohio WTRA Latrobe, Pa. WISL Shiladelphia. Pa. WISL Shmokin, Pa. WGOK Memphis, Tenn. KGKO Dallas, Tex.
WNIX Springfald, Vt.
WBBL Richmond, Va.
KBLU Salemond,
KRIV Samer. Va.
KCVL Colvilie. Wash.
WISC Madison. Wis.

1490-201.2

CFRC Kingston, Ont. rep Sault Sth. Marle, Ont CKBM Montaquy Ont. WANA Anniston, Que WAJF Decatur. Ala. WRLO Lanett. Ala.
WHBE Selma. Ala. KYCA Prescott Ariz KXAR Hope, Ark. KTLO Mtn. Home, Ark. KORS Paragould, Ark. KXRJ Russellville, Ark. KDIA Auburn. Callf.
KMAP Bakersfiold. Calif.
KOWS Banning, Call
KBLA Burbank, Caite
KBLA Burbank, Cailf
KAFP Petaluma. Callf.
KDB Santa Barbara, Calli.
KBLF Red Blun. Callf.
KSYC Yroka, Callf.
KOLO Sterling. Colo.
WNLC New London, Conn
WTOR Torrington, Conn.
WTOR Torrington, Conn
WTRL Eradenton, Fia.
WTTT Coral Gables. Fia. WJBS DeLand, Fla. WAHR Mlaml Beach. Fla. WSIR Winter Haven. Fla.
WMOG Brunswiek, Ga
WMJM Cordole, Ga. WSFE Quitman, Ga. WSNT Sandersville. Ga. KTOH Llhue, Hawait KBLI Blackfoot, Idaho KCID Caldwell, Idaho WKRO Calro, ill. WOAN Danvilie, Ili.
W

1000
1000
500
500
1000
1000
1000
5000
1000
1000
250
500
5000
500
5000
1000
5000
500
250
1000
5000
500
5000 5000 5000
1000

100
5000 KLGR Redwd. Fails, Minn.
5000 WLOX Blloxi, Miss. 000 WLAU Cleveland. Miss. WHOC Philadolphis. 00 WVIM Vickshurg, Miss. WVIM Vieksburg, Mis
KDMO Carthage. Mo. KTTR Rolla, Mo.
000 KBOW Butta, Mo.
1000 KBOW Butte. Mont.
500 WLDB Atlantie City. N.J.
5000 KWEW Hobbs. N.Mex KRSN Los Alamos, N.Mex.
100
100
500
1000
5000
5000 WBTA Amsterdam. N.Y.
1000 WKNY KIngston. N.Y
1000 WICY Malone, N.Y.
1000 WDLC Port Jorvis, N. 5000 WSSB Durham, N.C. 1000 WFLB Fayottevilie. N. 1000
5000
1000 WOOE Loaksville. N.C. 1000 WSTP Sallsbury. N.C. $\begin{aligned} 500 & \text { KNDC Hettinger, N. Dak. } \\ 1000 & \text { KOVC Valloy City }\end{aligned}$
1000
1000
KOVC Valloy City, N.Da 1000 WSRS Cloveland Hghts., Ohlo 5000 WOHI E. Llverpool. Ohio
1000 WMOA Marietta, Ohlo
1000 WMRN Marlon, Ohlo
1000 KWRW Guthris, Okla.
5000 KBIX Muskogee, Okla.
1000 KBKR nr, Baker, Oreg
1000 KRNR Roseburg, Ore
00
WAZL Hazleton, Pa,
WARD Johnstown. Pa
100
250
WMGW Mondvilie, Pa. WNBT Wellsboro.
WMDD Falarde.

WGCD Chester, Puert.
WMRB Groenville, S.C.
KORN Mitehell. S. Dak.
WOPI Bristol, Tenn.
WDXB Chattanooga. Tenn.
WPLI Jackson. Tenn.
WDXL Lexington, Tenn.
WJJM Lewisburg, Tenn.
WATO Oak Ridge, Tenn.
KNOW Austin, Tex.
KIBL Beeville. Tex
KBST Big Spring. Tex.
KHUZ Borger, Tex.
KNEL Brady, Tex.
KSAM Huntsvile. T
KSAM Huntsvilie. Tex.
KVOW Littlefteld, Tex.
KVOW Littiefield, To
KPLT Parls, Tex.
KGKB Tyler, TEX.
KVWC Vernon. Tex.
KVOG Ooden. Uiah
KVOG Ogden, Uiah
WIKE Nowport, Vt.
WCVA Culpeper. Va. WVEC Hampton. Va. WAYB Waynesboro, Va, KBRO Bremerton. Wash KLOG Kelso, Wash.
250 KENE TOppenlsh. Wash.
KTEL Walla Walla. Wash. WTCS Fairmont, W.Va. WGEZ Beiolt, Wis.
WLDL LaCrosse, Wis.
250 WOSH Dshkosh. Wis.
250 WiGM Medford. Wis.
250 KGOS Torrington, Wyo.
250 KRTR Tharmopolis, WYo.
250
250

c.
c.
c.
ont

ass.
0

 KGBT Haringen, Tox.
1540-195.0
ZNS Nassau, B.W.I.
KPOL Los Angoles, Calif.
KPLL Los Annoles, Cal
KLKC Parsons Kins
WSMI IItehfeid, Kans.
WBNL Boonville, Ind.
WLOt Laporte, ind,
KXEL Waterioo. Iowa
KNEX MePherson, Kan
KOON Wheaton. Md.
KSID Sidney, Nebr.
WPTR Albany, N. Y.
WIFM Eixlin, N.C.
WJMO Cleveland, Ohio
WJMJ Phlladelphia. P
WPTS Pittston. Pa.
WPME Punxsutawney. Pa.
WADK Newport, R.I.
KCUL Ft Worth, Tex.
KGBC Galveston, Tex.
KIWW San Antonlo, Tex.
KGIB Bremerton. Wash.
WTKM Ft. Atyinson, Wis.
$\begin{array}{lr}\text { WTKM Ft. Atxinson. Wis. } & 250\end{array}$
1550-193.5
CBE Windsor, Ont.
WHBS Huntsville.
WHBS Huntsville. Ala.
KOBY San Fran., Calif
KENT Shrevaport, L
KRES St. Joseph. M
WLOA Braddock, Pa.
WBS Bennotsvilie, S.C.
1560-192.3
CFRS Simeoe, Ont.
KPMC Bakersfeld, C
KPMC Bakersfleld, Callf. 10000
WBYS Canton. III. Caili.
KSWI Council BraIts, Yow
WTNS Coshocton. Ohjo
WTOD Toledo. Ohio
KWCO Chieks Ohio
$\begin{array}{lr}\text { WENA Bayamon, P.R. } & 1000 \\ \text { WAGC Chattanoogar Tenn } & 250 \\ \text { WB }\end{array}$
KHBR Hillsboro ${ }^{\text {WHata }}$ Tenn. 10000
1570-191.1
CHUB Nanalma, B.C
CFRY Portage Ia Prairle
CBi Sidney, N.S.
CFOR Orillia, Ont
WCRL Oneonta, Ala
WRWI Seima, Ala.
WRW Salma, Ala.
WETU Wetumpka, Ala.
KCVR Lodl, Callf.
KLOV Loveland, Colo.
WTWB Auburndale, Fla.
WFBF Fernandina Bch.: Fla.
WJOE Ward Ridos, Fla.
WJOE Ward Ridga,
WOKZ Alton, III.
WOKZ Alten, III.
WBEE Farvor. III
WBEE Harvoy, III.
WIAY Robinson. Ilf.
WKTL Kendallville, Ind.
WKTL Kendaliville, Ind.
WLRP New Albany, Ind.
WLRP Now Albany, Ind.
KFAD Fairneld, lowa
KJFJ Wobster City, lowe
KJFJ Wobster City, lowa
KNDY Marysville, Kans.
KWSK Pratt. Kans.
WFLW Montlecllo. K
WABL Amlte, La.
KLLA Leesvilie. La.

K
KMAR Winnsboro, La.
WTOW Towson, Md.
WPEP Taunton, Mass.
WPEP Taunton, Mass
WMRP Flint, Mich
1000 WFRP Flint, Mich.
.in. Mic . .

1580-189.2

1590-188.7
WATM Atmors, Ala,
WVNA Tuseumbla, Ala.WLBN Lebanon, Ky. WGTC Gorseheads, N.Y WGTC Greenville, N.
WNOS HIoh Point,

Re. Wave Length
Kwow Pomona, Callf, UBA Yuba City, Calit. KKAKF Key West Flà. WGKA Atlanta. Ga. WMCW Harvard. III. W BTO Linton. ind. WARU Peru. Ind. KLGA Aloona, lowa KCRG Cedar Rapids, Iowa

W.P.|Kc. Wave Length W.P.|Kc. Wave Length 000 KMDO Ft. Scott. Kans. 000 WNES Central City, Ky. STL Eminence. $K y$. 500 KFNY Forriday. Ka. 1000 KLFT Golden Meadow, La. 500 KLVI Vivian La. \begin{tabular}{l|l}
500 \& WINX Rockville, Md,

5000 \& WBOS Brookiline, Mass.

1000 \& WBOS Brookline. Mass.

5000 \& WJK Sprinofleld. Mass.
\end{tabular} 5000

5000
W WHRO Springfeld, Mass.

500 WTRU Muskegon, Mich
500 WTRU Muskegon, Mich. 500 WKDL Clarksdale, Mis 1000 KTTM Trenton, Mo.
1000 KTTN Trenton. Mo.
500 WWRL Woodside. N. Y.
1000 WGIV Charlotte, N.C.
5000 WFRC Reldsyllie. N.C.
1000 KUSH Cushing. Okla.

United States and Canadian

Amplitude-Modulation (AM) Broadcasting Stations Listed Alphabetically by Location
Abbreviations: C.L., call lefters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co., C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadeasting Co., Inc. (For watt power of station, see list arranged by Frequency, P. 169)

World-Wide Short-Wave Stations

Active and Most Commonly Heard in U. S. Listed by Frequency

(For Cañadian Short-Wave Stations, see separate listing, p. 186) Abbreviations: Kc., frequency in kilocycles (fo change to megacycles, divide by 1000), C.L. call letters. Due to malfunction of transmitter, interference by other stations, jamming, variance in propagalional conditions, or reallocation of frequencies, stations may use other frequencies than those given

Ke. C.L. Location 3275 VP4RD Port-of. Spain, 3300 Belize Brit. Hondrinidad 3310 Yvog Trufillo, Venez 3320 Y VaG Bareelona, Venez. 3330 YYQL EI Tigre, Venez. 3940 YVMV Carora, Venez. 3950 YYKT Caraeas, Venez. 3960 YYOC San Cristobal, ${ }^{2} \mathbf{z}$. 3960201 KIn घston, Jamaica 3330 YVMI Maracalloo. Venez. 3380 YVQN Puerto La Cruz, \dot{V}_{2} 3390 YVKX Caracas, Venez. 3400 Y YKP Caracas, Venez. 3410 YVMK Cabimas, Venez. 3420 YVOE Merlda, Vonez. 3440 YVLI Maracay, Venez. 3450 YVO! Barcelona. Venez. 3460 YVLC Valenela, Venez, 3480 YVLE Puerto Cabello, Vz 3490 YVRA Maturin. Vonez. 3620 YVLG Maracay. Venez. 3980 Suva, Fill Islands
4650 HC2AJ Gutyaquil. Eeua. 4752 YVMA Maracalbo, Venez. 4768 HJEF Call. Colombla 4775 HJGB Buearamanga, Col. 4783 HJAB Barranquilia, Col, 4790 YVaC Ciudad Bollvar, Vz. 4797 HJFU Armenla. Colombia 4800 YVME Maracalbo, Venez. 4805 2YS8 Mana0s, Brazil 4810 YVMG Maracalbo, Venez. 4815 HJBB Cucuta, Col.
4820 XEJB Guadalajara, Mex. 4820 YVNB Coro, Venez.
4830 Y VOA San Cristobal. Vez. 4835 HJKE Bodota, Colombla 4840 YVol Valera, Venez,

Ke. C.L. Loeation
4845 CSA9s Ponta Delgada. Az. 4848 HJGF Bucaramanga, Col. 4855 HVMS Barquisimeto, Vz 4860 JKL Tokyo. Japan 4860 YYPA San Fillipe, Venez. 4865 PRC5 Belem. Para, Brazi 4871 HJBG Cueuta, Colombia 4880 YVKF Cueuta, Colombla 4892 YVKG Caracas, Venez. 4895 HJCH Caracas, Venez. 4895 PRFG Monota, Col.
4897 VLX 4 Purth Aust
4900 YVQE Cludad Bolivar
4903 HJAG Barranquilla. Col.
4907 YVMM Coro, Venez, Col. 4910 JKM Nazaki, Janan 4910 YDB2 Djakarta, Indon. 4915 Acera, Ghana
4915 YVKR Caracas, Venez, 4917 Hi98 Santiago. Dom.R. 4930 HJAP Cartagena, Col
4940 JKM Kawachi, Japan
4940 YVMQ Barquisimeto, Vz.
4945 HJCW Bogota, Col.
4950 ZQI Kingston. Jamalea
4951 Dakar, Senegal
4960 YVGÁ Cumana, Venez. 4967 HJAE Cartaeena, Col, 4985 YVMO Barquisimeto, V_{2}. 4993 HIlA Santiago. D. Rep. 5014 PJCs Willimstad, Curae. 5020 HJFW Manizales, Col. 5023 H 182 Santiago, D. Rep. 5030 YVKM Caracas, Venez.
5045 ZYP23 Petropolls, Brazil 5050 YVKD Caracas, Venez 505\$ H12L Ciudad Trujilio, D.R 5055 HJOW Medeilin, Col.

184 . WHITE'S RADIO LOG

Ke. C.L. Location
5070 HJKH Sutaten2a, Colom. 3870 TIGPH San lose, C.R1ea 5875 HRN Tegucigalima, Hond, 5920 HRA Tegucigalpa, Hond. 5940
5947
K habarovosk. U.S.
Oseo 5947 Moscow, U.S.S.R.
5948 4V2S Port-au-Prince, H, 5952 TGNA Guatomala, Guat. 965 HJCF Bogota, Colombia 5969 HVJ Vatlean City
5973 H 14 T Ciudad Trujlilo. D.R. 5981 2FY Georgetown, Br.Gul. 5985 Radio Free Europe,

Munich, Germany

5985 Shanghal. China

5990 Andorra, Andorra
5990 TGJA Guatemala, Guat.
5995 H050 Panama. Panama
6000 HJKD Bogota, Colombia
6005 Berim, Germany
6009 H IFC Colon, Panama
6009 HJFC Armenia, Coiombla
6010 GRE London. England $6012 \times$ EOI 2 Prague, Czecho. 6012 XEOI Moxico, Mex.
6015 KU2XAJ USS Courier 6015 KU2XAJ USS Courier In Mediterranean 6016 PRAB Recife. Brazil 6018 HJCX Bogota, Col. 6020 Kiev, U.S.S.R.

Murope,
6020 WRCA New York, U.S.A.
6020 XEUW Vera Cruz. Mex. 6024 Brazzaville, Fr. Eq.Afrlea 6026 Hadio Nederiand
6028 ELBC Man Pedro. D, R.
6030 Stutteart, Germany
6030 D2H6 Manifa,
6030 DZH6 Manifa, P.I.
6030 XEKW Moralia
6030 HP5B Panama, Pan.
6030 HP 68 Panama, Pan.
6035 GWS London, England

Ke. C.L. Location

6035 Monte Carlo, Monaco
6035 XYZ Rangoon, Burma
6037 San Jose, Costa Riea
6040 GSY London, England
6040 KCBR Delanio, Callf.
6040 Tangier, Tangier
6040 WLWO CIneinnatI U.S.A.
6045 YDF Djakarta, Indonesia
6050 GSA London, England
6054 HJEX Call, Colombla
6055 HER2 Bern, Switzerland
6060 GSX London, England
6060 KRCA San Fran., U.S.A
6060 Tangler I. Tangier
6060 WABC New York, U.8.A,
6065 SBO Motala, Sweden
6065 XEXE M oxleo City. Mox.
6069 10B Tokyo. Japan
6070 Petropavlovsk, U.S.S.R.
6070 GRR London. Englend
6075 KGEI San Fran., U.S.A
6080 KRCA San Fran., Calif.
6080 Munich III, Germany
6081 OAX4Z LIma, Peru
6085 ORU Brussels. Belgium
6085 VP4RD Port.of
6085 ZYK2 Recife, Brazil Trínidad
6090 GWM London, England
6090 VLI 6 Sydney, Australla
6092 Luxemburg
6095 Horby. Sweden
6095 Radio Free Europe. Munieh, Germany
6095 ZYB7 Sao Paulo, Brazil
6098 HJFK Pereira, Colombla
6100 Belgrade, Yugosiayja
6100 Munich, Germany
6100 WRCA New York. U.S.A.
6110 GSL London. Englang
6112 Hilz Ciudad Trulillo.
6112 Hilz Ciudad Truli
6115 Berlin. Bermany

Ke. C.L. Location
6120 HC2F 8 Guayaquil, Eeua.
6120 ZJ14 11 massol, Cyprus
6120 Tangier. Tangler
6120 WRCA Naw York. U.S.A.
6122 HP5H Panama, Pan,
6124 HRQ San Pedro Sula, Hond
6125 GWA London, England
6130 XEUZ Mexico. Mex.
6130 COCD Havana, Cuba
6130 Port Moresby. New Guine
6135 HJED Call., Colombla
6140 Munich. Gormany
G147 PRL9 Redeliln, Col.
6147 PRL9 Rio do Janelro, Br.
6150 GRW London, England
6150 GRW London, Ensland
6150 TGAZ Guatemala, Guat.
6160 HJKJ Bogota, Colombia
6160 Honolulu. Hawali
6160 GUnich. Germany
6165 HER3 Bern, Switzerland
6167 4VCM Port-au-Prince, H
6170 Munich. Gormany
6170 GSZ London. England
6170 KCBR Dalano, Cal.,U.
6170 KCBR Deiano, Cal., U.S
6170 YVKO Caracas, Venez.
6172 2JMS Limassol, Cypr
6175 XEXA Mexico. Mex.
6180 LRM wendoza, ArDentina
6180 Ashkabad. U.S.S.R.
6180 GRO London, England
6182 TGWB Guatemala, Guat.
6185 KRCA San Fran., U.S.A
6185 HJCT Bogota, Colombia
6190 Frankfurt, Germany
6190 H19T Puerto Plata, D.R
WLWD CincInnati, U.S.A
6190 WRCA Now York, U.S.A
6195 Honolulu. Hawali
6200 Paris. Franco
6215 SPis Warsaw, Poland 6235 HRO2 La Coiba, Hond.
6235 Karachi. Pakistan
6248 Budapest, Hungary
6285 TGTQ Guatemala, Gust
295 DTMI Leodoldyllio. Bel
6295 TGLA Guatemala, Guat
20 Baden- Badon, COCW Havana. Cuba
33 TGTA Guatemala. Gu
31 HRPI SanPedro Sula, Hond.
374 CSA21 Lisbon, Port.
32 HC2RL Guayaquil, Eeu.
50 COCY Santa Clara, Cuba
80 HROW Teguelgalpa, Hond.
6758 YNVP Menadua. Nle.
6830 4XB2,
6830 4XB2I Tol Aviv, israol
6870 HC4EB Manta, Ecuador
7105 Parls, France
7120 GRMA Praia. Cape V, Isls.
7135 BED7 London. England
7135 MCM London. England
7145 Radio Free Europo.
Elsbon, Portugal
7145 Radlo Fre
50 GRT Londen. Englan
7165 Moseow. U.S.S.R.
7175 VUD Delhl. Indla
7185 GRK London. England
7200 GWZ London. England
7205 Warsaw, Poland
7210 GWL London. England 7210 HEI3 Bern. Switzerlant 7222 Budapest, Hungary 7240 Mostow, U.S.S.R. 7240 Paris, France
7250 GWI London. Ensland
7257 JKH Tokyo. Japan
7260 GSU London. Ensland
7260 Moseow. U.S.S.R.
7280 GWN London. England
7285 TAS Ankara. Turke
7290 Hamburg. Gormany
7290 VUD Deihl, India
7295 Mostow, U.S.S.R.
Munleh. Germany
7300 SVO2 Athens, Groce
7315 YSO San Salvador, Sai
7335 BEC36 Taipel, Formesa
7360 Moscow, U.S.S.R.
7670 Sofla, Bulgaria
7850 2AA Tirana, Albania
7863 SUX Cario, Egypt
7933 HLKA Pusan, S. Korea
7951 Alicanto, Spain
8036 FXE Beirut, Lebanon
8664 CoJK Camaguey. Cuba
8825 COCQ Havana, Cyha
8955 CoKG Santlago. Cuba
9007 Volce of Zion. Tel AvI
9026 CDBz Havana, Cuha
9236 Coba Havana, Cuba
9252 Bucharest, Rumania
8290 PRN9 Rio de Janelro

Ke. C.L. Location
9363 COBC Havana, Cuba
9369 Madrid, Spain
9380 Khabarovsk. U.S.S.R.
9400 OTM2 Leopoldville,
Belgian

Congo

3410 GRi London. England
9440 Brazzaville. Fr. EQ. Africa
9452 LRYI Buenos Aires, Arg.
9463 TAP Ankara, Turk
9480 Moscow, U.S.S.R.
9490 KUJ39 Apana, Guam.
9500 KEWW Mexico. Mex. 95004 OLRSB Prague, Czecho.
9505 HOLA Colon, Panama
9505 JBD Kawachl, Japan
9505 JBO Kawach, Japan
9510 VVJ Barquisimeto. Ven.
9510 GSB London. England
9515 KRCA San Fran.. Callf.
9515 TAT Ankara, Turkey
9520 Colombo, Coylon
9520 HJKF Bogota
9520 HJKF Bogota, Colombla
9520 VZF Skamiobak, Den
9520 WLWO Cineinnat1, U, Sinea
9520 WLWO Cineinnatl, U.S.A.
9525 GWJ London, England
9525 ZBWS Victorla, Hong Kong
9527 Warsaw, Poland
9530 Honolulu. Hawall
9530 Manila, Philipplnes 9 S
9530 WABC Now York. U.S.A.
9530 WABC Now York, U.S.A.
9530 WGEO Schenect'y, U.S.A.
9530 WGEO Sehenect"y, U.
9531 COCO Havana, Cuba
9535 HER4 Bern, Switzerland
9535 HER4 Bern, Switzeriand
9535 SBU Stockholm, Sweden
9540 Munich. Germany
9540 VLG9 Melbourne. Aus.
9540 ZL2 Wellington. N. Zeal
9543 XYZ Rangoon, Burma
9548 XEFT Vera Cruz. Mox
9548 XEF Vera Cruz.
9550 HVJ Vatican City
9550 Parlis. Franea
9550 OLRSA Prague, Czecho.
3555 OIX2 Porl, Finland
9555 XETT Mexico, Mex.
9560 JBD2 Kawachi, Japan
9560 London. England
9560 Parls, France
0560 Tangier, Tangler
9560 WLWO CincinnatI, U.S.A
9560 WRCA Now York. U.S.A.
9565 Komsomolsk, U.S.S.R.
9565 ZYK3 Reeifo, Brazil
9570 Algiers, Algerla
9570 GWX London. England
9570 KWID San Fran.. U.S.A.
9570 Warsaw, Poland
9570 Bucharost, Rumanla
9575 Rome. Italy
9580 GSC London, Engiand
9580 VLB9 Shopparton, Aus
9585 Madrid. Spaln
9590 PCJ Hilversum. Noth.
9590 WABC Now York, U.S.A.
9600 GRY London, England
9600 KCBR Delano. Cal., U.S.A
9600 KRCA San Fran., U.S.A.
9600 Leningrad, U.S.S.R.
9605 HPSJ Panama,
9605 JKL2 Toyko, Japan
9605 Radio Free Europe, Portugal
9607 Athens. Greece
610 VLX9 Perth, Australla 9610 2YC8 Rlo do Janelro, Brazil 9610 LLG Dsio, Norway
9610 XERA Moxico. N
9615 Tangier. Tangior
9615 VLB9 Shepparton. Aus.
9615 WRCA New York. U.S.A
9618 TIDCR San Joso, C. Rlea
9620 Horby, Sweden
9620 Parls. France
9620 Z L8 Wellington, N.Z.
9625 XEBT Mexico. Mox.
9625 GWO London. England
9625 VP4RD Port-au-Spain.
9630 HJKC Bogota, Colombia
9630 VUD4/10 Delhi. India
9630 Rome, Italy
9635 Munleh, Germany
9635 Tangler. Tangler
9640 Acera. Ghana
9640 DZH2 Manila. P.I.
9640 GVZ London, Engiand
9645 Karachi. Pakistan
9645 LLH Oslo, Norway
9645 TIFC San Jose. C. Rje
.9646 HVJ9 Vatican Clty
9650 Honolulu. Hawail
9650 Moscow. U.S.S.R,
9650 Tangier, Tangler
9650 WABC New York. U.S.A.
9652 Z3M8 LImassol. Cyprus
9654 DTC2 Loopoldville.
Belgian Congo
9655 JKI2 Nazaki, Japan
9656 4VEH Cap-Haition. Haiti
9660 EQC Toheran. Iran
9660 GWP London. England
9660 VLQ9 Brisbano. Aus.
9665 HEUS Bern. Switzerland
9668 TGNB Guatemala, Guat.
9670 Munleh, Germany
9670 Tangler. Tangler
9670 WGEO Schenectady, U.S.A.

Ke. C.L. Locafion
9670 KGEI San Fran., U.S.A.
9670 Mascow, U.S.S.R.
3675 GWT London, England
9675 JOB3 Tokyo, Japan
9680 Paris, France
9680 XEQQ Mexleo, Mex.
9660 VUD Dolhi, India
9680 Moseow, U.S.S.R.
9680 VLR9/VLH9 Melbourne.
9685 Parls. France Australia
9685 WLWO Cincinnati, U.S.A
9690 LRA Buenos AÍres. Arg
9690 GRX London. Eniland
9690 Moseow, U.S.S.R
9690 SIngapore, Malaya
9695 JKM2 Kawachi. Japan
9700 GWY London, England
9700 WRCA New York, U.S.A.
9700 Soffa, Bulgaria
9700 Tangier, Tangler
9700 WLWO CineinnatI, U.S.A.
9700 KCWO Dineinnati, U.S.A.
9700 WCER Delano. Calif., USA
9700 WCER Fi, do Franco, Mart.
9700 ZF6
9710 Moscow, U.S.S.R.
9710 Dakar, Fr. W. Aitrica
9710 Yakar, Fr. Wrtahrica
9710 YDF6 Djakarta, Indonesia
9710 Rome, italy
9710
9715
Cairo, Egypt
9716 Moscow, U.S.S.R.
9717 Radio Froe Europe. Ger.
9717 Radio Froe Europe. Ger.
9720 PRL7 Rio do Janeiro, Brazil
9730 Nanking, China
9730 DZH7 Hanila. P.t.
9730 Leipzig, Germany
9735 H12T Ciudad.Trujillo. D.R.
9741 CSA27 Lisbon. Portugai
9743 HCJB Quito. Ecuador
9745 ORU Brussels, Belgium
9760 CR7BE Lourence
Marquas, Moz.
9764 TGWA Guatemal
9770 London. England
9770 ORU Brussels, Belgium
9770 PRL4 Rlo de Jan., Brazil
9780 Rome, Italy
9785 Monto Carlo, Monato
9825 GRH London, England
9830 Budapest, Hungary
9833 COBL Havana, Cuba
9865 YDF8 O jakarta. Indonesia
9915 GRU London. England
9966 Brazzavilla, Fr, Eq. Africa
10058 SUV Cario. Egypt
10220 PSH Rio de Jandiro, Brazll
10258 XRRA Polplng. China
10780 SDE2 Motala, Sweden
11027 CSA29 Lisbon. Portugal
11090 CSA92 PontaDelgada, Azores
11630 Leningrad. U.S.S.R.
11650 Peking. China
11670 Bangkok, Thaila
II670 Bangkok, Thailand
I 1680 HJCQ Bogota, Colombia
II680 GRG London, England
11685 Poking, China
If695 HP5A Panama, Panama
11700 GVW London, England
11702 Paris, France
11705 JoA4 Tokyo.
11705 SBP Motala. Swan
11705 SBP Motala, Swod
11710 Moseow, U.S.S.R.
11710 Mostow, U.S.S.R.
11710 Tangler, Tangier
11710 Tangler, Tangier
11710 VUDS/7 Delhl. India
il710 WLWD Cincinnati, U.S.A.
11714 ZJM7 Limassol. Cyprus
ilits HEIS Bern. Switzerland
11718 Athens. Grece
II720 PRL8 Rio de Janelro, Brazil
11720 Radio Canada (Montreal)
11720 OTM4 Leopoidvilte.
Bolglan Congo
11720 ORY2 Brussels, Belgium 11724 HNG Bashdad. Iraq
11725 COCY Havana, Cuba
11730 GVV London. England
11730 KGEI San Fran., U.S.A
11730 PHI Hilversum. Nether.
11730 CEII73 Santiago, Chile
11735 BEDG Taipel. Formosa
11735 LKQ Frederlkstad. Nor.
II735 Radio Froe Europe. Ger.
11740 Moscow, U.S.S.R.
11740 Warsaw, Poland
11740 WRUL Boston, U.S.A.
II742 CEII74 Santiago, Chils
11742 CEilit Santiago, Chile
11750 GSD Londen, England
11755 Moscow, U.S.S.R.
11760 OLR4B Prague, Czecho.
11760 Tangler, Tangler
11760 VLAII/VLBII
Shepparton, Aus.
11760 VUD7/i! Delht, India
11764 CR7BH Lourenco
Marques, Mozamblque
I 1770 GVU London. England
II770 YDENDF7 Djakarta.
U.S.A.

11775 WRCA New York
11780 Moseow, U.S.S.R.
$11780 \times \mathrm{COH}$.
I 1780 XEQH Mexico. D.F.
I 1780 ZLS Wellington. N.Z.
11790 WABC Now York. U.S.A.
II790 GWV London. Ensland
11790 VUD Delhl. India
11790 KRCA San Fran.. U.S.A.
11790 WRUL Boston. U.S.A.
IIP0 WAUL Boston. U.S.A.
Ke. C.L. Location
11790 Tangier, Tangier
11795 YOF3 D Jakartany Indonesia
11795 WRUL Boston, U.S.A.
11800 GWH London. England
11800 Brussels, Belglum
11810 Moscow, U.S.S.R.
11810 VLAil Shepparton, Aus.
11810 VLAI Shepparton, Aus.
11810 VLCi Shepparton. Aus.
11815 Warsaw, Poland
11815 Warsaw, Poland
11820 GSN London. England
11820 GSN London, England
II820 XEBR Hermosillo. Mox,
11820 KEBR Hermosilio.
11825 JK Tokyo. Japan
11825 JK16 Tokyo.Japan
11825 Moscow, U.S.S.R.
11825 ZYK3 Reclife, Brazil
11825 ZYK3 Recifo, Brazil
11830 FZS4 Salgon, Fr.Indo.C.
11830 Moseow. U.S.S.R.
11830 Tangior, 11830 WABC Now York, U.S.A.
11830 WABC Now York, U.S.A.
11830 WRCA Now York, U.S.A.
11830 WRCA Now rork, U.S.A.
11835 CXA19 Montevideo Uru.
il840 VLWII Porth, Australla
II840 OLRAA Prague, Czecho.
I|840 LRT Tueuman. Argentina
il 845 Karachi. Pakistan
11847 Paris, France
11850 VLBiI Shepparton. Aus.
i| 850 ORU Brussels, Bolglum
11850 TGNC Guatemala, Guat.
11850 VUOII Delhi, India
11850 LLK Oslo. Norway
II855 DZH9 Manila. Philippines
11855 Radio Free Europe.
Lisbon, Portusal
11860 GSE London, England
11860 K WiD San Fran., U.S.A.
11865 CR6RA Luanda. Angola
11865 HER5 Barn. Swltzerland
11870 Munieh. Germany
11870 KRCA San Fran. U.8.A.
11870 KwiD San Fran.. U.S.A.
11870 K wID San Fran.
11870 Tangler, Tangler
II870 WBOS Boston. U.S.A.
18870 WRUL Boston, U.S.A.
11875 DLR4C Prague, Czecho.
11880 Moscow, U.S.S.R.
11880 LRS Buenos Alros,
11880 LRS Buenos Alros, Ary.
11880 VLGII/VLHII
11880 Horby,Sweden Me
11880 XEHH Mexlco. Mox,
11880 ERE
London. England
11880 GRE London. England
11880 SBP Stockhoim. Sweden
11880 SBP Stockhoim, Sweden
11885 APK3 Karachl, Pakistan
if 890 Moseow, U.S.S.R.
11890 GWW London. England
11890 KZF
II890 KZFJ Manila, P.I.
11890 WRCA Now York. U.S. A.
11895 FHE3 Dakar. Fr.W.Af.
11895 FHE3 Dakar. Fr.W.Af
11895 Manlla, Philipplnes
II 895 Manlla, Philippines
I 900 CEII 100 Viparalso
11900 CEil90 Valparalso, Chile
11900 CXAl0 Montevideo, Uru,
11900 CXA 10 Montevideo, Uru,
I 1900 HCJB Calvary Radio
11900 WGED Schenectady, UISISA. A.
11900 XEXE Mexleo CIty, Mex.
11900 XEXE Mexieo Clty. Mex.
11905 Rome, italy
t1910 Budapest, Hungary
19910 Karachi, Pakistan
II915 Damascus, Syria
i1915 HCJB Qulto. Ecuador
11918 日ED4 Talpoi. Formosa
11924 FZS4 Salgen. Yiotnam
1924 FVX Saigen, Viotnam
I 1930 GVX London. England
1930 GVX London, England
I 935 Warsaw. Poland
11937 Bucharest, Rumanla
II955 GVY London, England
11955 GVY London, England
11960 Mostow, U.S.S.R.
11950 YSAX San Salvador. Saly.

Kc. C.L. Location
15130 KRCA San Frani. U.S.A. 15130 WRCA Now York. U.S.A 15135 PRE23 Sao Paulo, Brazi 15140 GSF London. Enoland 15145 YDC Djakarta. Indonesia 15150 K 2 Rocife, Brazil 15150 OAX4R LIma, Perunilo
15150 CEISIS Santiago, Chilo 15150 CEISIS Santiago, Chi I5155 SBT Motala, Swedon
15156 ZYBg Sao Paulo, Braz ISI 60 VUDS/7 Delhi, india 15160 VLBIS Shepparton. Aus. 15160 TLB Tartessus. Spain
15160 TAB 15160 TAB Tartessus. Spain
15160 TAU Ankara. Turkey 15160 TAU Ankarai Turkey
15165 WLWO Cineinnati. U. isifs ZYN7 Fortaleza, Brazil 15165 ZYN7 Fortaloza, Brazi 15170 TGWA Guatemala 15170 TGWA Guatemala, Guat. 15170 Moseow.U.S.S.R.
IS180 GSO London. England 15180 GSO London, Eng
15180 Moseow, U.S.S.R. 15180 Moseow. U.S.S.R. 15180 OZH2. Shamiobak. Den. 15190 VUSS/I Deihi. India 15195 TAQ Ankara. Turkey 15185 TAQ Ankara. Turkey 15200 MLAIS/ViCis.
S200 VLaisivichepparton, Aus 15205 XESC Mexico, Mexleo 15205 XEXE Moxico, Me
15210 Munich, Germany 15210 GWU London. England 15210 WRCA New York, U.S.A 15210 VLGIS Melbourne, Aus. 15210 Tangler. Tangler
15220 PCJ H liversum, Neth.
15220 XESC Mexieo. Moxico
15220 ZLio Wollington. N.Z.
15225 JBDS Kawachi. Japan
15228 Komsomolsk. U.S.S.R.
15230 GWO Landon, England
15230 MOseow. U.S.S.R.
15230 OLRSAA Praguo, Czeeho. 15230 VLH 15 Melbourne, Aus. 15230 WRUL Boston. U.S.A. 15235 BED3 Taipai, Formosa 15235 JBD4 Kawachl, Japan 15235 JOA4 Tokyo. Japan 15235 JOB5 Tokyo. Japan

Kc. C.L. Location
15240 Eelgrade, Yugosiavla
15240 KRCA San Fran., U.S.A.
5240 Paris, France
15240 VLHIS Molbourno. Aus.
15240 WLWO Cineinnati, U.S.A.
i5250 Manlla, P.I.
15250 WLWO Cineinnati, U.S.A.

15250 Tandier, Tansler
15260 GSI

15250 GSI London. England
15270 Karachi. Pakistan
15270 KCRR Dolano, Cal., U.S.A.
15270 Munch. Germany
15270 W ABC Now York, U.S.A.
15270 Sverdlovsk. U.S.S.R.
15280 Munjeh, Germany
15280 MOscowilington. N.Z.
15280 Tascow. U.S.S.R.
15280 Tangier, Tangior
15285 CR7B G Lourento
15285 CR7B G Loureneo Mozambique
15285 WRCA Now York. U.S.A.
15285 WRUL Boston, U.S.A.
5290 LRU Buenos Alros. Ara 15290 VUDS/9 Delhl. India 15295 Tangler. Tantior
$\$ 300$ DZH8 Manla. P.I.
15300 GWR London. Engiand 15300 Singapore. Malaya
15305 HER6 Bern. Switzeriand
15305 HER6 Bern. Switzerland
15305 RV97 Novosibirsk. U.S.S. R.
15305
15310 KCBR Novosibirsk. U.S.S.R.
15310 GSP London. England
15320 VLGIS Melbourne. Aus.
15320 VLCis Shepparton, Aus.
$\$ 5320$ Moscow U.S.S.
15320 OLR5B Prague, Czech.
15325 Rome. Italy
15330 KGEI San Fran., U.S.A.
15330 Sona. Bulparia
15330 WLWO Cineinnati, U.S.A.
15330 WGEO Sehoneetady, U.S.A.
15335 Brussels. Belolum
$15335 \mathrm{Karaeh1}$; Pakistan
15340 Moseow. U.S.S. R.
15340 KCBR Dalano, Cal., U.S.A.
15340 Tangier, Tangler
15345 Athens, Groece
15347 LRA Buenos Alres. Arg.
15350 Parls. France
15350 WRUL' Boston, U.S.A.

Ke. C.L. Location
15350 WLWO Cineinnati, U.S.A. 15350 VUD8 Deihi. Indla
15352 Luxemburg
15360 London, England
15360 Mostow. U.S.S.R.
15364 ZYC3 Rlo de Jan., Brazil

15390 Mosenw. U.S.S.R.
15400 Paris. Frane
15400 Rome. Italy
5405 PZC Paramarlbo, Surinam
15410 Moseow. U.S.S.R.
15425 Radio Netherlands
15435 GWE London. England
15435 GWE London. England
5440 Moseow. U.S.S.
5450 GRD London. England
15595 Brazzaville, Fr. Eq. Africa
15620 Madrid. Spain
17715 GRA London. Ennland
7720 GRA London, Enpland
17730 Lva London Encs. Arg.
7750 WMUL Dondo Enpiand
17750 WRUL Boston.
17760 WGEO Schenoetady, U.S.A.
17780 KGEI San Fran., U.S.A.
17760 VUD Delhi. Indie
17770 KCBR Delano. Cal., U.S.A
7770 Roms, Italy
17775 Tansler. Tansier
17780 V V versum, Natherlands 17780 WRCA Hew York. U.S. 17780 WRCA Now York. U.S.A 17780 Manila. P...
7784 HER7 Bern, Switzerland
17780 GSG London. Entland
17795 WLWO Cineinnati, U.S.A.
17800 HCJB Calvary Radio
17800 KRCA San Fran. U.S.A.
17800 KRHO Honolulu. Hawall
17800 Stockholm. 8 weden
17800 Stockholm. 8wedon
$1780201 X 5$ Pori. Finland
17804 Rome, Italy
17805 DZI6 Manlta, P.I. 17810 GSV London, England 17810 Moseow, U.S.S.R. 17815 WRUL Boston. U.S.A. 17820 Colombo, Ceylon 17825 LLN Osilo. Norway

Kc. C.L. Location
17830 TAV Ankara. Turkey
17830 Moscow. U.S.S.R.
17830 WABC Now York, U.S.A.
17835 Karaehi. Paklatan
17840 Brazzavilio. Fr. Eq.Africa
17840 Moscow, U.S.S.R.
17740 VLCI Sheppartion, Aus.
17840 HVJ Vatican Clity
17852 Parls, France
17885 Damaseus, Syria
17870 CSA44 Lisbon. Portugal
17890 HCJB Qulto. Écuador
18025 GRQ London. England
18080 GVO London. Enland
18130 GRP London. England
21460 KRCA San Fran... U.S.A.
21470 GSH London Engind
21470 GSH London. England
21480 Milversum. Netherlands
21490 Paris. France
21500 WRCA Now. York U.S.A.
21510 VUDS Delhi, Indie
21520 HER8 Born, Switzarland
21520 WLWO Cincinnati, U.S.A.
21530
21530
2
21530 Moseow, U.S.S.R.
21540 VLB2 Shopparton. Aus.
21550 GST
21550 GST London. Engla
21560 Moscow. U.E.S.R.
21560 Moseow. U.E.S.R.
21570 WABC Now
21570 WABC Now York, U.8.A.
21580 Horby. Swaden
21590 WGEO Schaneetady. N.Y.
21610 WRCA Now York. U.S.A
21640 GRZ London En
21640 GRZ London, England
21650 WLWo Cintinnati, U.S.A.
21670 LLP Os. Portugal
21675 GVR London, England
21680 VLC2i Shopparton. Aus
21690 Tanglor. Tan iter
21700 VUDió Doihi. India
21710 GVS London. England
21730 WRCA New York U.S.A
21740 KCBR Delano, Cal..U.S.A
21740 KGEI San Fran., U.S.A.
21740 Parfis. Franee
21750 GVI London, England
${ }_{28100}$ G8K London, England

Canadian Short-Wave Stations

Listed by Frequency

Abbreviations: Kc., frequency in kilocycles (to change to megacycles, divide by 1000); C.L., call letters

Ke. C.L. Location
5970 CBNX St. John's, Nfld.
CKNA Sackville, N.B. 5990 CHAY Sackville, N.B. 6005 CFCX Montrat, Qub. 6010 CJCX Sydney, N.S. 6060 CKRZ Saekvillo, N.B. 6060 CKRZ Sackvilio. N.B.
6070 CFRX Toronto, Ont. 6070 CFRX Toronto, Ont.
6080 CKFX Vaneouver, B.C. 6080 CKFX
6090 CBFW Montreal. Que. 6090 CBFW Montroa, Que.
CKOB.Sackville, N.B.

Kc. C.L. Locotion 6130 CHNX. Halifex, N.S. 8150 CKRO WInalpeg. Man 6160 CBUX Vancouver, B.C 9520 CBFR Montrail, Que. ${ }^{5855}$ CKLP Sackvilio. N.B. 9610 CBFX Montroal: Que.
 9710 CKLR Sackvillo, N.B.
K. C.L. Location

9740 CHFO Sackrillo. N.E.
11705 CBFY Montroal, Qua.
11720 CBFA Mexvile. N.B. CBFL Montrasi, Que. CKRX Wiaknille. N.B.
11760 CBFA Montroal, Qua.

11945 CKEX Sackvillo. N.B.
15090 CKLX Sackvillo. N.B.

Kc. C.L. Location
15190 CBFZ Montrasl, Que. 13320 CKCX Seckville N.B.
 17735 CHRX Saekville, N.B.
17820 CKNC Sackillo, N. 17985 CHYS Saekville. N.B:
21600 CKBP Sackvillo. N.B. 21800 CKRP Sackvillo. N.B.
21710 CHLA Sackvillo. N.B. 21710 CHLA Sackvillo. N. B.
Note: Sackville. N.B. is often

United States

Frequency-Modulation (FM) Stations

(Territories and possessions follow states) Abbreviations; C.L., call letters, Mc., megacycles (for frequency in kilocycles, change decimal point to comma and add two zeros); asterisk (${ }^{*}$) indicates educational station

Locetlon	C.L.	Mc.	Location	C.L.	Mc.	Le		Mc.	Locotlon	1	c.
ALA	AMA		Mammoth 8pring Pocahontas	KAMS KPOC.FM	$\begin{array}{r} 108.9 \\ 97.7 \end{array}$	Los Anseles	KRKD.FM	96.3	1	RADO	
Albortville	WAVU-FM	105.1	Pocahontas ${ }^{\text {Piloam Springs }}$	KUOA.FM	105.7		KURC	-93.9	Bouldor	W	97.3
Aloxandor Clty	WRFS.FM	106.1					KXLU	-88.7	Colorado 8prin		-91.3
Andslusia	WCTA.FM	98.1	A	a		Marysville	KMYG.FM	99.8			-90.5
Anniston	WHMAFFM	100.5	Bakersfield	KERN.FM	94.1	Modesto	KBEE-FM	103.3	Denver	EL-FM	97.3 98.5
	WILN	104.7	Berkeloy	KPFA	94.1	Mt. Dlablo	KSBR	100.5 10.5	Manatou Spriugs	KCMS-FM	102.7
	WSGN.FM	93.7		KPFB	-89,3	Oceanside	KOEN	-89.7		TICUT	
Clanton	WKMLF-FM	100.9		KRE.FM	102.9	Ontario	KEDO	93.5			
Decatur	WHOS.FM	$\underline{92.5}$	Beverly Hills	KCBH	98.7	Sacramento	KCRA-FM	96.1	Brookreid	W0.FM	94.5 98.3
Lanett	WRLD.FM	102.9	Claremont	KSPC	*90.7		K J	85.3	Hartford	WHCN	93.7
Mobllo	WABE.FM	102.1	Euroka	KRED-FM	96.3		XDA.F	107.9		WTIC.FM	96.5
Talladega	WHTB.F	99.9	Fresno	KARM-FM	101.9	Sausalito	KD	102.1	Merlden W	WMWW-FM	95.7
Tuscaloosa	BC.FM	95.7		KMJ.FM	97.9	San Bernar	K	91.3	Now Haven	WNHC.FM	99.1
Tusealoosa	WUOA	-91.7	Glondale	KBMS	105.9	San Bernard	FSO.FM	94.1	Stamford	WSTC.FM	96.7
	NA			KFMU	97.1		KSDS	-88.3	DELA	WARE	
Mesa	KTYL.FM	104.7		KHOF-FM	191.5	San F	KSON-FM	104.7	Dover	WOOV.FM	94.7
Phoenix	KELE	95.5	Hollywood	KFWB.FM	${ }_{94.7}$	San F	KCBS.FM	103,7	Wilmington	WDEL.FM	93.7
	KFCA	-88.5	Holly	KHJ.FM	101.1		KEAR	97.3		WJBR	99.9
Tucson	KTKT.FM	99.5		KNX.FM	93.1		KGO-FM	103.7			
ARK	NSAS		Lons Beach	KFOX-FM	102.3		KNBC.FM	99.7			
Blytheville	KLCN.FM	96.1		KNDB	103.1	San Jose		96.3 95	COLU	WBIA	
Ft. Smith	KFPW-FM	94.9	Los Angeles	ABC.FM	95.5	San Mat	KCSm	-90.9	Washington	WASH-FM	97.1
				KCBH	98.7	Santa Anna	KWIZ.FM	$96: 7$			99.5 100.3
Jonesboro	KBTM-FM	101.9		KFAC.FM	104.3	Santa Clara	KSCU	90. 1		WFAN	100.3
186	S RADIO	LOG	'1	KNX.FM	$\begin{aligned} & 93.1 \\ & 94.7 \end{aligned}$	Santa Monlea Stocktod	KCRW KCVN	-89.9		WMAS.FM	103.5

Locaflon	C.L. Mc.	Locotion C.L. Me.	Locotion	C.L. Mc.	Locotion	C.L.	Mc.
washington, D.C.	C. WOL-FM 98.7	Muncía WWHI * 91.5 WYSN 91.1		WDET-FM*101.9 WDTR *90.9	Poughkeopste Rochester	WKIP.FM WHFM	$\begin{array}{r} 104.7 \\ 98.9 \end{array}$
	WRC-FM 93.9 WTOP.FM 96.3	Now Albany WNAN 98.1		WJBK.FM ${ }^{\text {W3, }}$ 90.9	Rochester Schonectady	${ }_{F}^{F M}$	98.9 98.5
	WWOC.FM WWO.	New Castlo ${ }^{\text {Now }}$ WCTW 102.5		WJLB.FM 97.9	South Bristo		1
FLOR	RIDA	South Bend WYSN 91.1		FM 969.3	Springville		I
Daytona Beach	WNDB.FM 94	Terre Haute wBow-FM 101.		101.1		DS.FM	93.1
Galnesville	WRUF.FM ${ }^{\text {P }} 104.1$	WTHI.FM 99.9	E. Lan	WKAR.FM 90.5		WSYR.FM	94.5
Jacksonvillo	WJAX-FM 95.1	Wabash WSKS 91.3	Flint	WFBE 95.1	Troy		92.3
	WJHP.FM 96:9	Warsaw WRSW 107.3		WFUM 107.1	Utica	WRUN-FM	105.7
	WMBR-FM 96.1	Washington WFML 106.5	Grand Rapids	92.5	Watertown	WWNY.FM	10.5
Lakelan	WAMFSI *88.1	IOWA		WJEF-FM 93.7	Wethersfol	WRRL	107.7 103.9
	WAHR-FM 93.9	Ames Wol-fm 30.1	Hiohland Pk.	WHPR *8.1	Woodside	WWRL.FM	$\begin{aligned} & 103.9 \\ & 105.1 \end{aligned}$
	GBS.FM 96.3	Boone K KFGQ 9 99.3	Hilisdale	WBSERFM 103.9	NORTH	CAROLI	
	WLRO 93.9	CiInton KROS.FM Davenport WOC. WOM 103.7	Kalamazoo Oak Park	WMCR ${ }^{102.1}$ WLDM 95.5	Asheboro		
	WTHS "91.7 WWPB-FM 101.5	Davenport WOC-FM O3. Dos Molnes KDPS K88.1	$\begin{aligned} & \text { Oak Park } \\ & \text { Royal Oak } \end{aligned}$	$\begin{aligned} & \text { WODM } 95.5 \\ & \text { WOAK } 98.3 \end{aligned}$	Asheboro Asheville	WWOS.FM	92.3
Mlami Bea	WKAT-FM 93.1	KSO-FM 97.3		WOMC 104.3	Burilngton	B8-FM	101.1 93.9
Orlando	WDBO-FM 92.3	WHOFM Dubuqu WDBQ 100.3	Saginaw Sturgls	$\begin{aligned} & \text { WSAM-FM } 98.1 \\ & \text { WSTR-FM } \\ & \hline 103.1 \end{aligned}$	Chapel	WUNC	-91.5
	WHOO.FM 96.5	lowa city KSUI 91.7			Charlott	Soc	103.5
Palm	WQXT-FM 97.9	Mason Clity KGLO.FM 101.1			Cllingman's $\mathrm{Pk}^{\text {c }}$	W	106.9
Panama City	WOLP.FM 98.9	MuscatIne KWPC-FM 99.7	Duluth	WEBC-FM 92.3	Durham	NC.	105.1
St. Petersburg	WTSP.FM 102.5	Starm Lake KAYL-FM 101.5	Mankato	KYSM.FM 103.5	Elkin	WIFM.	100.9
Tallahasseo	WFSU-FM 91.5	Waverly KWAR 89.1	minneadolis	KW-FM 989.5	${ }_{\text {F }}{ }^{\text {F arest }}$ C	WFBC.FM	${ }_{93.3}^{98.1}$
	WDAE.FM 100.7	NSAS		LOL.FM 99.5		Wanc	101.0
	$\text { WPKM } 104.7$	Empor		99.5	Golds boro		96.3
	WTUN *88.9	Lawrenee K KANU 91.5		$\begin{array}{r} 97.1 \\ 104.7 \end{array}$	Greensboro		9.9
Winter Park	WPRK 91.5	$\begin{array}{ll}\text { Manhattan } \\ \text { Ottawa } & \text { KSOB-FM } \\ \text { KTJO.FM }\end{array}$	St. Paul	MIN.FM 99.5			
G	RGIA	Wlehita KFH.FM 100.3		WNOV 89.1	High Point	HPE.FM	95.5
Athen	WGAU.FM 99.5	KMUW -89.1	Winona	KWNO.FM 97.5		WHPS	-89.3
Atlan	WABE 90.1	JCKY		SSIPPI			99.5
	WAGA.FM 103.3	Ashland WCMI.FM 93.7	Gulfrort	WGCM.FM 101.5	Leaksville	WLOE.FM	34.5
	WAKE.FM 93.5	Bowllig Green WBON 101.1		WJOX-FM 102.9	Laurinburg	WEWO.FM	96.5
	KA.FM 92.9	Bownig Green WLBJ-FM 101.1	Meridian	WMMI *88.1		BU	94.3
August	G-FM 105.7	Central CIty WNES.FM 101.9		OURI	Ralelgh	KIX-FM	96.1
	Q.FM 103	Fulton WFUL.FM 104.9				PTF.FM	94.7
um	WRBL-FM 93.3	Henderson WSON-FM 99.5	Cla	KWOS.FM ${ }_{\text {K8.5 }}$		WAL.FM	101.5
Gainesv	WDUN-FM 103.9	Hopkinsville WHOP.FM - ${ }_{\text {WBK }}$		WMBH.FM 98.1	oidsvilio	W	
Lagrange	WLAG.FM 104.1		Kansas C	KCMO-FM 94.9	Rocky Mount	WEED.FM	98.1
Macon	WMAZ-FM 99.1	Loulsvlle WFPK -91.9	Kennett	KBOA.FM 98.9		F	100.7
Nownan Rome	WCOH-FM 96.7 WRGA.FM 106.5	WFWFPL -89.3	Poplar	K WOC-FM 94.5	Salis	P.	106.5
Savann	FM 100.3	Madisonville WFMW-FM 93.9	Spring	94.7	Sanfo		103.1
	97.3	Maytield WKTM.FM 107.1					105.5
Swainsbo	101.7	98.1	West Plalns	KWPM.FM 97.3		WSIC.FM	
ceoa	.FM	Padueah WPAD.FM 96.9				WCPS.FM	104.3
	0	Padueah WPAD-FM 96.9			Thomasvll	WTNC.FM	98.3
Poeatello	SEI.FM 96.5	ANA	Reno	95.5	Winston-Salom	WAIP	93.1
		Alexandria KALB-FM 96.9	NEW	MPSHIRE		WSIS.FM	04
LLIN	15	Baton Roupe WAIL.FM 104.3				HI	
Bloomington	WJBC.FM 101.5		Clarem	WTSV-FM 106.1	Akron	WAKR.FM	
Canton	BYS.FM 100.9	Manroe KMBL-FM 104:1	Manche	WKBR-FW ${ }^{\text {P }}$ W.7		WAPS	89.1
Car	$\checkmark 91$	Now Orleans WWEH 89.3	Na	WOTW.FM 106.3	A	FAH-FM	101.7
	WWS-FM 97.5	SU.FM 105.3	NEW	JERSEY	A	ATG.FM	101.3
Chicapo	WBBMEFM 96.3	RCM 97.1			Ashtabula	CA.FM	103.7
	EZ ${ }^{\text {a }} 9.5$	Shrevaport KRMD.FM 101		SNJ.FM 98.9		RX.FM	100.5
	WCLM 101.9	Shreveport KRMD.FM 101.1	Ne	AT.FM 94.7	Bowling Green	WBCU	-98.1
	WEFM 99.5	KH.FM 96		WBGO *88.3	Canton	HBC.FM	94.1
	NR.FM 94.7	KWKH.FM ${ }^{\text {a }}$	N	CTC-FM 98.3	CInclnnatl	WCPO-FM	105.1
	WFJL ${ }^{\text {\% }} 93.1$	AINE	South Orange	WSOU - 89.5		RG.	101.8
	WFMF 100.3	Brunswick WBOR "91.1					102.7
			Zaropath	WAWZ.FM 99.1	Cleveland	$Y_{\mathbf{W}}$	15.7
	WMFT 98.7	Lewiston WCOU.FM 93.9	NEW	AEXICO		Do	90.3 102.1
	WNIB 97.1	ARYLAND	Albuquerque	KANW "89.1		ERE.F	98.5
	WSEL 104.3	Annapolis WNAV.FM 99-1		KHFM 96.3		GAR	99.5
	WNIC 91.1	Baltimore WCWBJC*88.1	Los Alam Mountain	$\begin{array}{cc}\text { KRSN.FM } & 98.5 \\ \text { KMFM } & 97.9\end{array}$			100.7
Emnoham	WSEI 95.7	AO.FM TH.FM 104.3			Clevoland	SRS.FM	${ }_{9} 9.3$
Elisin	WEPS 88.1	Bothesda WUST-FM 106.3	NEW	YORK	Columbus	WCBE	90.5
Evimwood Park	WXFM 105.9	Bradhury Helghts WRNC 95.5	Auburn	WMB0-FM 96.1		COL.FM	
Evanston		Cumberland WCUM-FM 102.0	Allegany	WHDL-FM 95.7		OSU.FM	${ }^{89.7}$
	WNUR "89.3 EBO.FM 99.9	Hagerstown WJEJ.FM 104.7	Bay Shore	MBO.FM 96.1		VKO	94.7
Jacksonv	WLDS.FM 100.5	Oakland WBUZ 95.5	Blnghamton	NBF-FM 98.1		WSLN	-91.1
Macomb	wwKS "91.3	AASSACHUSETTS	Bronam	KOP-FM 95.3	Elyrla	EOL.FM	107.3
Mattoon	BH.FM 96.9	Amherst WAMF*88.	Brooklyn	WNYE -91.5	Findlay	FIN-FM	100.5
Mt. Verno	X-FM 94.1	Amterst WMUA 99.1	Buffalo	WBEN-FM 106.5	Fostoria	WFOB	96.7
Oak Park	PPA-FM 102.3	Boston WBUR -90.9		WBNY-FM 92.9	Frem	FRO-	99.3
Oiney	WVLN.FM 92.9	Woston WCOP.FM 100.7		WWOL-FM 104.1	Kont	WKSU.FM	-88. 1
Paris	PRS-FM 98.3	EI-FM 103.3		WXRC 103.3	LIma	WIMA-FM	102.1
Peorla	MBD-FM 92.5	WERS ${ }^{88.9}$	Cherry Valloy	WRRRC 101.9	Marlon	MRN.FM	
Quiney	WGEM-FM 105.1	DH-FM 94.5	Corning	WCLI-FM 106.1	Mt. Ver	MVO-FM	93.7
	WTAD.FM 99.5	RKO.FM 98.5	Cortland	WKRT.FM 99.9	Nowark	LT.FM	100.3
Rockford ${ }^{\text {Roek Istand }}$	WROK-FM 97.5	Brockton Caber	Dioral Par	WRRD \mathbf{W}	Oxtord	WPAY.FM	104.1
Sprinofold	WTAX-FM 103.7		Hem	WHLI-FM 98.3	Stoubenville	WSTV.FM	103.5
Urbana	WILL.FM 90.9	WXHR 96.9	Ho	WWHGFM 105.3	Toledo	Pr	101.5
INOI	IANA	Greenfeld WHAL-FM 98.3	Ithaca	HCU.FM .97.3		W	-91.3
Bloomin		Lowell WLLH-FM 99.5		WIYP 91.7		WTOL-FM	104.7
Connersvilio	NB.FM 100.3	New Bedford WBSM-FM 97.3		IWMSA.FM 105.3	Woostar	WST.FM	104.5
Crawfordsville	WBBS 106.5	New Weder.FM 98.1	Now Rochelle	WNRC.FM 93.5	Youngstown	WKBN.FM	08.9
Elkhart	WCMR.FM 95.1	Pittsfold WBEC.FM 94.3	New York	WABC.FM 95.5			
	WTRC.FM 100.7	S. Hadloy WMHC 88.5		WBAI 99.5		(1)	
Evansville	KY.FM 104.1	Springfield WBZA-FM 97.1		WBFM 101.3	Norman	WNAD.FM	90.9
	WEVC WPSR	WHYEDEM 93.7		WEVD.FM 97.9	Oklahoma	KBGC	88.9
ary	WGVE*88.1	MAS-FM 94.7		WFUV ${ }^{\text {a }}$ 9.7	Stul	AMC.FM	90.5
Greoncastlo	WGRE -91.7	Waltham WCRE.FM 102.5		WGHF 101.9		P1	93.9
Hammond	WJOB-FM 92.3	W. Yarmouth WOCB.FM 94.3		WHOM.FM 92.3	Tulsa	KWGS	"90.5
Hartiord City	WHCI*91.9	Willlamstown WCFM *90.1		-89.9			
Huntinaton	WVSH *31.9	WInchester WHSR-FM -91.9		-FM 100.3	ORE	GON	
Indlanapolls	WAJC ${ }^{\text {W }} 104.5$	Worcester WTAG.FM 96.1		FM F M 93.9	Eugene	KRVm	
	WFMS 102.3	WICHIGAN		${ }_{98}^{98.7}$		UGN.FM	90.1
	WIAN "90.1	MICHIGAN		WRCA-FM 97.1		kwax	91.1
Jasper	ITZ.FM 104.7	Ann Arbor WUOM "91.7		WWRL.FM 105.1	Grants Pass	KGPO	96.9
Madison	WORX-FM 96.7	\%. WHFB-FM 99.9	Nlagara Falls	LD-FM 98.5			
nrit		$\begin{array}{lll}\text { Coldwater } \\ \text { Dearborn } & \text { WTVB-FM } \\ & \text { WKMH.FM } & \text { 98.3 }\end{array}$	Ogdensbura				

Canadian

Frequency-Modulation (FM) Stations
C.L., call letters, Me., megacyeles (For frequency in Kilocycles, change docimal point to comma and add two zeros)

Lecetion	4.	Mc.	Locatlon	C.L.	M	Locatlon		M 6.	Locetlen	. 1	Mc.
Brantford, Ont.	CKPC-FM	92.1		KLC-FM	99.5		CFRA-FM	93.9		CFRB.FM	99.9
Cornwall. Ont.	CKSF.FM	104.5		CKWS-FM	96.3	Quebec. Que.	CHRC.FM	98.1		CHFI-FM	98.1
Edmonton, Alta.	CFRN-FM	100.3	Kitchener, Ont.	CKCR-FM	96.7	Rimouski, Que.	CJBR.FM	101.5		CJRT-FM	91.1
	CJCA.FM	99.5	London. Ont.	CFPL-FM	. 95.9	St. Catharlnes.			Vancouver, B.C.	CBU-FM	105.7
	CKUA-FM	98.1	Montreal, Que.	BF-FM	95.1		CKTB-FM	97.7	Verdun, Que.	CKVL.FM	96.9
Ft. William,				-	100.7	Sydney, N.S.	CJCB-FM	94.9	Vietoria, B.C.	CKOA-FM	98.5
Ont.	CKPR-FM	34.3		CFCF-FM	106.5	Timmins. Ont.	CKGB.FM	94.5	WIndsor, Ont.	CKLW-FM	93.9
Halliax, N.S.	CHNS-FM	96.1	Oshawa. Ont.	CKLB.FM	93.5	Toronto, Ont.	CBC.FM	99.1	Wİnipeg, Man.	CJOB-FM	103.1
Kingston, Ont.	CFRC-FM	91.9	Ottawa, Ont.	CBO-FM	103.3						

United States Television Stations

Listed Alphabetically by Location

(Teritories and possessions follow states). C.L., call letters; Chan., channel number; asterisk (${ }^{*}$) indicates educational station.

Canadian Television Stations

Listed Alphabetically by Location
Abbreviations: C.L., call lefters; Chan., channel number.

Location C.L. Chan.	Locatlon C.L. Chan.	Location C.L. Chan.	Location	C.L. C
Caloary ALBERTA CHCT.TV 2	NEW BRUNSWICK	Kitehenor London CKCO-TV CFPL 18 10		QUEBEC
			Monqulere	CKRS.TV ${ }_{\text {CBFT }} 12$
Medicine Cat CHAT-TV	NE	Ottawa coble	Quebec	
BRITISH COLUMBIA	CJox-TV ${ }_{\text {coio }}$	Port Artur cricker	Quebec	CFCM. ${ }_{\text {CVM }}$
			RImouski Rouyn Sherb	
MANITOBA		Windsor CKLW	SASK	CHEWA
Brandon ${ }_{\text {Winnipes }}$	ONTARIO	Wingham CRINCE EDWXARTV	$\underset{\substack{\text { Resina } \\ \text { Saskatoon }}}{\text { Sta }}$	$\underset{\text { CFCKC-TV }}{\text { CFGO }}$
La		PRINCE EDW		
cose Bay	Kinoston CK			

The Evolution of Broadcasting

RADIO communication was born of many minds and developments. In the 1860^{\prime} s, Maxwell predicted the existence of radio waves. Hertz later demonstrated that rapid variations of electric current can be projected into space in the form of waves sinilar to those of light and heat. In 1895, Marconi transmitted radio signals for a short distance and, at the turn of the century, conducted successful trans-atlantic tests.
This new communication medium was first known as "wireless". American use of the term "radio" is traced to about 1912 when the Navy, feeling that "wireless" was too inclusive, adopted the word "radiotelegraph". The word "broadcast" likewise stems from early United States naval reference to "broadcast" of orders to the fleet.
Broadcasting as we know it today was largely made possible by development of the vacuum tube by Fleming in 1904, and its improvement by De Forest in 1906.

The first voice broadcast is a subject for debate. Claims to that distinction range from "Hello, Rainey" said to have been sent by Stubblefield to a partner in a demonstration near Murray, Ky., in 1892, to an impromptu program from Brant Rock, Mass., by Fessenden in 1906, which was picked up by nearby ships.
There were other early experimental audio transmissionssuch as De Forest putting the singer Caruso on the air in 1910 and trans-atlantic voice tests by the Navy station at Arlington, Va., in 1915-but it was not until after World War I that regular broadcasting stations developed from experimental operations going back to 1912. However, records of the Department of Commerce show KDKA, Pittsburgh, as the first commercially licensed standard AM (amplitude modulation) broadcast station, dating from November 1920.

There was experimental network operation over telephone lines as early as 1922. In that year WJZ (now WABC), New York, and WGY, Schenectady, broadcast the world series. Early in 1923 WEAF (now WRCA), New York, and WNAC, Boston, picked up a football game from Chicago. Later that same year WEAF and WGY were connected with KDKA, Pittsburgh, and K MW (now in Cleveland), Chicago, to carry talks made at a dinner in New York. President Coolidge's message to Congress
was broadcast by six stations in late 1923. In 1926 the National Broadcasting Co. started the first regular network with 24 stations. Its first coast-to-coast hookup, in 1927, broadcast a football game. The first round-the-world broadcast was made from Schenectady in 1930.
Hisforical. There was a Wireless Ship Act of 1910 which applied to use of radio by ships, but the Radio Act of 1912 was the first domestic law for the control of radio in general.

Early broadcasting was experimental and. therefore, noncommercial. In 1919 broadcasters operated as "limited commercial stations". In 1922 the "wavelength" of 360 meters (approximately 830 kilocycles) was assigned for the transmission of "important news items, entertainment, lectures, sermons, and similar matter".
So rapid was the development of aural broadcasting that, upon recommendation of the National Radio Conference of 1923 and 1924 the Department of Commerce allocated 550 to 1500 kilocycles for standard broadcast (AM being the only regular broadcast at that time), and authorized operating power up to 5000 watts (5 kilowatts).
Increase in the number of AM stations caused so much interference that the National Radio Conference of 1925 asked for a limitation on broadcast tine and power since many broadcasters were jumping their frequencies and increasing their power and operating time at will, regardiess of the effect on other stations.
In 1926 President Coolidge urged Congress to remedy matters. The result was the Dill-White Radio Act of 1927 which created a five-member Federal Radio Commission with certain regulatory powers over radio.

At the request of President Roosevelt, the Secretary of Commerce in 1933 appointed an interdepartmental committee to study the overall interstate and international electrical communications situation. The resultant Communications Act of 1934 created the present Federal Communications Commission.

Call Letters. Intemational agreement provides for the national identification of a radio station by the first letter of its assigned call signal, and for this purpose apportions the alphabet among different nations. United States stations use the initial letters K, N, and W , exclusively, and part of the A series.

Broadeast stations are assigned call letters beginning with K or with W.

During radio's infancy, most of the broadcast stations were in the East. As inland stations developed, the Mississippi River was made the dividing line of K and W calls. KDKA, Pittsburgh, was assigned the K letter before the present system was put into effect.
Broadeast Operation. In AM broadcast the audio waves are impressed on the carrier wave in a manner to cause its amplitude (or power) to vary with the audio waves. The frequency of the carrier remains constant. This is known as "amplitude modulation". In "frequency modulation" (FM), the amplitude remains unchanged but the frequency is varied in a manner corresponding to the voice or music to be transmitted.

AM broadcast stations ise "medium waves". That is to say, they transmit 540,000 to $1,600,000$ waves a second. At 540,000 waves a second, the distance between the crests is approximately 1,800 feet. This is known as "wave length". A station trans-" mitting 540,000 waves a second is said to have a "frequency" of 540,000 cycles or 540 kilocycles.
The so-called "short-wave" (long-distance) broadcast stations transmit from $6,000,000$ to $25,000,000$ waves per second. These waves are sent out one after another so rapidly that the distance between their crests (wave length) is only about 37 to 150 feet. Under international agreement, certain high frequency bands are allocated for broadcasts directed between nations. Frequencies used by international broadcast stations are in the bands between 6000 and 21700 kilocycles.
The modulated radio wave from the radio station is picked up by the home receiving antenna; in the receiver the audio and carrier waves are separated by a device called a detector or demodulator, and the audio wave is relayed to the loud speaker where it is transformed back into the sound that you hear.
AM Broadeast. The 535 to 1605 kilocycles portion of the the radio spectrum is now used for AM broadcast. The band consists of 107 channels, each 10 kilocycles in width. Individual stations are assigned to frequencies in the center of each channel, such as 540 kilocycles, 550 kilocycles, etc. AM broadcast stations use power of from 100 watts up to 50 kilowatts $(50,000$ watts).
"Clear channels" are set apart by international agreement for the operation of maximum powered AM stations to serve remote rural areas. The other channels are shared by so many regional and local stations that people living outside populous communities must at night depend largely upon the strong signals of distant clear channel stations which are protected against night-time interference.

FM Broodcast. FM (frequency modulation) broadcast has several advantages over the older AM broadcast. FM has higher fidelity characteristics and is ordinarily free of static, fading and background overlapping of other station programs.

FM's greater tonal range capability is due prinarily to the fact that it uses a channel 20 times wider than that enployed for AM broadcast. Then, too, FM occupies a higher portion of the radio spectrum where static and other noise is less prevalent than at lower frequencies.

Most FM stations serve areas within a radius of approximately 35 to 75 miles, although high-powered FM stations sometimes reach out 100 miles or more. Low-power stations have a limited local coverage.
The principle of frequency modulation has long been known but its advantages for broadcasting were not realized until shortly before World War II. Largely as a result of interest evoked by extensive FM development work by Edwin H. Armstrong in the 1930's, the Commission authorized increased FM experimentation and in 1940, after extensive public hearings, provided for commercial FM operation to start January 1, 1941.

There was no "first" individual commercial FM grant because, on October 31, 1940, the Commission authorized construction permits to 15 such stations simultaneously. The first commercial FM station licensed by the Commission was WSM-FM Nashville (May/29, 1941), which operated until 1951.

FM stations were initially assigned call letters with added
numerals, but in 1943 the present letter system was adopted. There is optional use of the suffix "FM" to distinguish FM stations from AM stations under joint operation.

Because of skywave interference experienced on the then FM band of $42-50$ megacycles, the Commission in 1945; after public hearing, moved FM to its present higher and less vulnerable position in the radio spectrum-88 to 108 megacycles-providing 80 channels for commercial FM and 20 channels for nonprofit educational broadcast.

TV Broadeast. The TV transmitter is, in effect, two separate units. One sends out the picture and the other the sound. Visual transmission is by amplitude modulation (AM). The sound portion employs frequency modulation (FM). The frequency space used for the combined video and sound transmission is about 600 times larger than for an AM program.
Like other forms of radio, TV was made possible by electronic discoveries in the late 19th century and early 20th century. In 1884, Nipkow, a German, patented a scanning disk for transmitting pictures by wireless. In our own country, Jenkins began his study of the subject about 1890. Rignour and Fournier conducted "television" experiments in France in the 1900's. In 1915 Marconi predicted "visible telephone". In 1923 Zworykin applied for a patent on the iconoscope (TV camera tube). Two years later Jenkins demonstrated mechanical TV apparatus. There were experiments by Alexanderson, Farnsworth, and Baird in 1926-1927. An experimental TV program was sent by wire between New York and Washington by the Bell Telephone Laboratories in 1927, in which Herbert Hoover, then Secretary of Commerce, participated.
The Federal Radio Commission reported that "a few" broadcast stations were experimenting with video in 1928. In that year, WGY, Schenectady, experimentally broadcast the first drama by TV. Large-screen TV was demonstrated by RCA at a New York theatre in 1930, and RCA tested outdoor TV pickup at Camden, N. J., in 1936.
Seventeen experimental TV stations were operating in 1937. The first United States President seen on TV was Franklin D. Roosevelt, when he opened the New York World's Fair in 1939. That year also saw the first telecast major league baseball game, college football game and professional boxing match.
The first grant looking to regular TV operation was issued to WNBT, New York, on June 17, 1941, effective July 1 of that year. One June 24, 1941, WCBW (now WCBS-TV). New York, was authorized to commence program tests July 1 thereafter. By May of 1942 ten commercial TV stations were on the air.
As predicted by the Commission in 1945 it became increasingly evident that the few available VHF channels were inadequate to provide a truly nationwide competitive TV service, Also, operating stations developed interference which had not been anticipated when TV broadcasting began. As a result, the Commission on September 30, 1948, stopped granting new TV stations pending a study of the situation. This was the so-called television "freeze" order.

On April 14, 1952, the Commission announced the lifting of the TV "freeze", the addition of 70 UHF channels (between 470-890 megacycles) to the 12 VHF channels (between 54-216 megacycles) then in use, and the adoption of a table making more than 2,000 channel assignments (over 1,400 UHF and over 500 VHF) to nearly 1,300 communities throughout the United States and its territories, including 242 assignments for noncommercial educational use.

The first commercial TV grants following the lifting of the freeze were made on July 11, 1952, simultaneously, to three Denver, Colo. stations-KFEL-TV, KDEN and KBTV. KFELTV began program operation on July 19 thereafter. The first UHF commercial TV station to go on the air was KPTV, Portland, Oregon, on September 20, 1952.

The initial commercial grant to the territories and possessions was made on July 23, 1952, to WKAQ-TV, San Juan, Puerto Rico.

The first noncommercial educational TV grant was made July 23, 1952, to the Kansas State College of Agriculture and Applied Science (KSAC-TV), at Manhattan, Kans.-Condensed from FCC Information Bulletin No. 2.

WHITE'S RADIO LOG

THE MOST EXCITING HIGH-FIDELITY PERFORMANCES EVER OFFERED IO NEW MEMBERS OF THE COLUMBIA (4) RECORD CLUB

A) You receive, at once, any 3 of these records-FREE. One is your gift for joining, and the other two are your Bonus records "in advance"
is After you have purchased only four records, you receive a 12" Columbia (4) Bonus record of your choice FREE for every two additional selections you purchase from the Club

If You enroll in any one of the four Club Divisions: Classical; Jarz; Listening and Dancing; Broadway, Movies, Television and Musical Comedles
A Every month you receive, FREE, a new issue of the Columbia © Record Club Magazine - which describes all forthcoming selections
if You may accept or reject the selection for your Divi. slon ... take records from other Divisions or take NO records in any one month
Y Your only membership obligation is to buy four selec. thons from the more than 100 to be offered in the coming 12 months. You may cancel membership any time thereafter

ET The records you want are malled and bilied to you at oniy $\$ 3.98$ (original cast Musical Shows somewhat higher), plus smail mailing charge
is You must be delighted with membership or you may cancel it by returning the free records within 10 days (B) "Coum

I

COLUMBIA (1) RECORD CLUB, Dept. 514

TERRE HAUTE, INDIANA

Please send me as my FREE gift the 3 records whose numbers I have circled at the right - and enroll me in the following Division of the Club:
(check one box only)

- Classical
- Listening and Dancing
[Jazz
B Broadway, Movies, Televișion and Musical Comodies
I agree to purchase four selections irom the more than 100 to be offered during the coming 12 months ... at regular llst price, plus small malling charge. For every two additional selections I accept, I am to receive a $12^{\prime \prime}$ Columbla (1) Bonus record of my cholce FREE.

```
Name
(Please Prini)
    Print)
```

Address
City .. Zone......State..............
CANADA: Prices slightly higher, Address 11-13 Soho St.. Toronto 2B If you wish to have this membership credited to an established Columbia Records dealer, authorized to accept subscriptions, please fill in the following information:

[^6]Dealer's Address - Columbia Records Sales Corp., 1967

CIRCLE 3 NUMBERS BELOW:

1. Eddy Duchin Story
2. Beethoven: 3 piano sonatas
3. Erroll Garner ("Caravan")
4. Gaité Parisienne; Les Sylphides
5. Easy To Remember-Luboff Choir
6. My Fair Lady-Orig. Broadway Cast
7. Brubeck and Jay \& Kai
8. Gershwin Hits-Percy Faith
9. Sinatra-Adventures of the Heart
10. Ambassador Satch
11. Firebird; Romeo and Juliet
12. Day By Day-Doris Day
13. Johann Strauss-Waltzes
14. Lure of the Tropics-Kostelanetz
15. Ports Of Call
16. Oklahoma!
17. Levant Plays Gershwin
18. The Elgart Touch
19. The Great Melodies of Tchaikovsky
20. Suddenly It's the Hi-Lo's
21. King of Swing-Benny Goodman
22. Brahms: Symphony No. 3
23. The Merry Widow
24. Wonderful, Wonderful-Mathis PE.?

THE ONLY COMPLETE ELECTRONIC COURSE radioradar. SONAR.ELTCTRONICS

Only CTS offers you COMPLETE training in all phases of Electronics. Why be satisfied with less? The new Christy Shop-Miethod Home Training makes learning interesting and easy. You learn Radar. Sonar. Electronics, Radio. Television. No previous experience needed. You learn by working with actual equipment. Makes learning fun. Speeds your progress. Helps you understand quicker and remenber longer.
You get comprelensive training starting with your irst CTS lesson! The complete knowledge CTS provides you with. gives you a broader knowledge, a greater understanding which will mean more jobs and a higher income for you for the rest of your life.

HOME LABORATORY SENT!

19 TRAINING INSTRUMENTS INCLUDED

With CTS COMPLETE Home Training Course, you receive a Home Laboratory to assemble, use and keep for years of peak performance. You receive a Multi-Tester, Oscillator, Signal Tracer. Oscilloscope. Signal Generator. Electronic Timer. Regenerative Radio, Giant-size Television Receiver 'optional) as well as many other valuable electronic devices. With these you will be able to make hundreds upon hundreds of exciting experiments.

EARN WHILE YOU LEARN!
 EARN $\$ 5.00-\$ 6.00$ PER HOUR

Or MORE while still studying? Almost from the very first you receive training that enables you to repair radios and television sets for friends and neighbors. To install and service electronic computers, communication equipment. protective equipment for police and fire departments, etc., etc.

FREE BOOK_SAMPLE LESSONS SENT

Get all there is to know about the Christy COMPLETE Electronic Course in Radio-Television-Radar-Sonar, etc. A complete, colorful, illustrated book on Electronics sent without obligation.
Also, we will send you Two sample lessons showing how the new CTS Shop-Method Home Training Course will train you for making big money in your spare time and for building a bright future for yourself.

CHRISTY TRADES SCHOOL, Dept. T-309, 4804 N. Kedzie Ave., Chitago 25 SIGN, MAIL FOR THREE BOOKS
| Christy Trades School, Dept. T.309, 4804 N. Kedzie, Chicago 25, III. Gentlemen: without cost or obllgation. two $F \mathscr{H}$ F: E lessons Please send me. without cost or boigatelling all about the CTS and the new 24 -Page Hustrated book Course In Radar, Sonar, Televislon. Radio and Electronics, and the many opportunities this new field offers.
Name . Agre. TODAY FOR CATALOG!

Address

City

Learn Radio-Television Servicing or Communications

by Practicing at Home in Spare Time

N.R.I. SENDS kits with which you prac-
cice building circuits common to Radio sice building circuits common to Radio and TV sets. You LEARN-BY-DOINC to locate Radio-TV croublos As part of N.R.I. Servicing Course, rou tuild Vacuurn Tube Voltmeter and AC•DC eceiver. Use VTVM to conduct experiments. -arn extra money fixirg

Fast Growing Field Offers You Good Pay, Success, Bright Future
 Bigger than ever and still grow-
ing fast. That's why Radio-TV has special appeal to ambitious men not satisfied with their job and earnings. More than 4,000 Radio and TV stations. More than 150 million home and auto Radios, 40 million TV sets. Color TV promises found added opportunities. For the rained man. there are good jobs, bright fu. -Les in Padio-TV Servicing or Broadcasting. Trainirg PLUS opportunity is the ideal combination for success. So plan now to get into Radio-TV. The technical man is looked -p to. He does important work, gets good my for it. Radio-Television offers that kind a work. NRI can supply training quickly, Keep your job of going away to school. Kiep your job while training. You learn st home in your spare time. NRI is the O DDEST and LARGEST home study RadioIf school. Its methods have proved successtul for more than 40 years.

Added Income Soon - \$10,\$15 a Week in Spare Time
Soon after enrolling, many NRI students start to earn $\$ 10, \$ 15$ a week in spare time fixing sets. Some pay for their training and enjoy extra luxuries this way. Some make enough to start their own Radio. T'V shops. NRI training is practical-gets quick results. Easy to understand, well ilustrated lessons teach you basic principles. And you LEARN. BY-DOING by practicing with kits of equipment which "bring to life" things you study

Find Out What NRI Offers

NRI has trained thousands for successful careers in Radio-TV. Study fast or slow-as you like. Diploma when you graduate. Mail coupon now. Paste it on a postcard or mail in envelope. ACTUAL LESSON FREE. Also 64 page catalog that shows opportunities, shows equipment you get. Cost of NRI courses luw. Easy terms. NATIONAL RADIO INSTITUTE, Dept. $7 \mathrm{MB3}$, Washington $16, \mathrm{D} . \mathrm{C}$.
N.R.I.TRAIMED THESE MEN FOR SUCCESS

"I was repairins Radios by 10th lesson. Now have good TV job." M. R. LINDEMUTH Fort Wayne, Ind.

"Dciag spare tizne reDairag on Radio and TV Soon servicin: full time CLIM, Waltham, Mass. veterans

Approved Under G.I. Bills

[^0]: A Printed Cireuit is a special Insulated chassis on which has been depos ited a conducting materlal which takes are merely plugred in and soldered to terminals.

[^1]: RCA instifutes, Ine. Homo Study Dept, RTVE-12
 350 Wost Fourth 5 treet, New York 14, N. Y.
 Whhout obligation, send me FREE 52 page CATALOG on Home Study Courses in Radio, Tolevision and Color IV. No Salesmon will call.

 Nome .
 addres. .
 \qquad
 KOREAN VETSI Enter discharge dete.
 . . Zone Stete.
 pon on poticera
 To save time, paste coupos on postcard

[^2]: Low-voltage, high-frequency, single-coil code-practice buzzer whith dust cover removed to reveal its components. Designed for students of the radio code, this is a Johnson Speed-X Model 114-400.

[^3]: With contacten renewed, re place the sponge rubber eup and tape in place. Aluminum foll shiolding completes the lob.

[^4]: pc. \#14 gauge aluminum 33/145"
 Q.gang miniature superhet tuning capacitor.

 211 mmf. "Ant.": 101 mmf. "Osc,"
 2 mifd., $6 v$. electrolytic capacitors 2 mifd., 15 v. electrolytic capacitors disc-type ceramic capacitors, 01 mifd. disc-type ceramic capacitors, 005 mfd . germanium diode detector, 1N64 or 1N48
 GE type 2 N136 transistor (Osc.-Mixer) (Converter)
 GE type 2 N135 transistor (I.F. Amp.)
 GE type 2N107 tramsistor (Audio Amp.) (Driver)
 GE type 2 N 107 transistor (Power Amp.)
 25 K ohm, sub-miniature potentiometer w/switch
 220 K ohm, $1 / 2$-watt composition resistors
 4.7 K ohm, $1 / 2$-watt composition resistors 2.7 K ohm, $1 / 2$-watt composition resistors 100 K ohm, $1 / 2$-watt composition resistors 1 K ohm, $1 / 2$-watt composition resistors $330 \mathrm{ohm}, 1 / 2$ watt composition resistors 3.3 K ohm, $1 / 2 \cdot$ watt composition resistors 27 K ohm, $1 / 2$ watt composition resistors $11 / 10^{\prime \prime}$ dia., knurled. pointer knob for $1 / 4^{\prime \prime}$ shaft $1 / 16^{\prime \prime}$ dia., plain knob for $1 / 8^{\prime \prime}$ shaft
 rubber grommet for $1 / 4^{\prime \prime}$ hole
 battery clip.
 Littelfuse clips: $21 / 4 \times 1 / 2^{\prime \prime}$ spacers

[^5]: Conventional iron disas. sembled for installation of new heating element. With frons in which the tips are held in place with a set serew, regular toosening of the screw and removal of tip for cleaning of the shank will prevert sticking and insure good heat conduc. tion from element to ilp.

[^6]: Dealer's Name

